Surname	\$
---------	----

First name(s)

wjec cbac

3430UE0-1

GCSE

Z22-3430UE0-1

FRIDAY, 27 MAY 2022 – MORNING

SCIENCE (Double Award)

Unit 5 – CHEMISTRY 2 HIGHER TIER

1 hour 15 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	7			
2.	8			
3.	9			
4.	15			
5.	8			
6.	6			
7.	7			
Total	60			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **7**(a) is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer **all** questions.

1. Polymer gels are commonly used in disposable nappies.

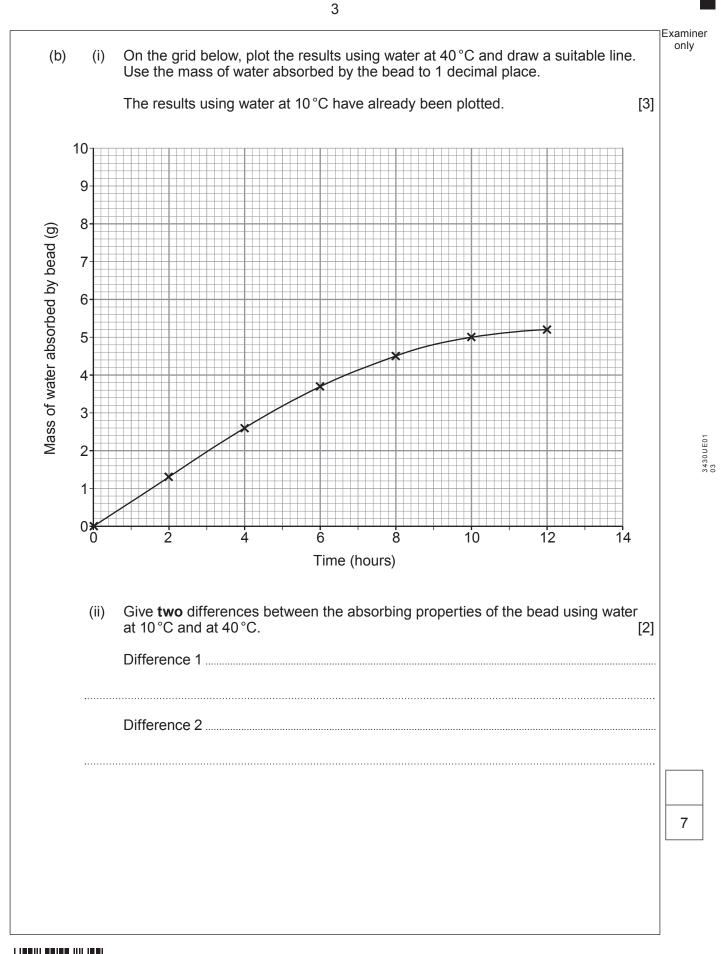
A company that manufactures disposable nappies was investigating the effect of temperature on the mass of water the polymer gel in their nappies is able to absorb.

(a) The results collected using water at 40 °C are given below. The initial mass of the polymer gel bead was 0.035 g.

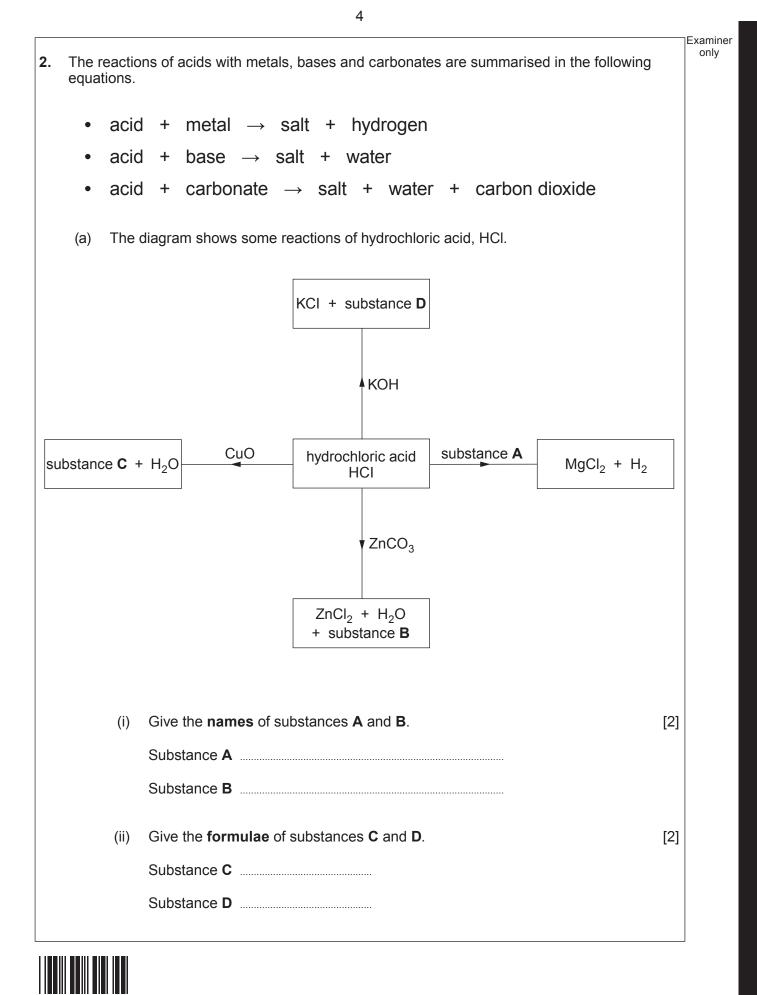
Time (hours)	Mass of bead (g)	Mass of water absorbed by bead (g) (to 1 decimal place)
0	0.035	0.0
2	4.048	4.0
4	6.030	6.0
6	7.280	7.2
8	7.891	7.9
10	8.181	8.1
12	8.181	8.1

(i) The percentage increase in the mass of the bead is calculated using the following equation.

percentage increase = $\frac{\text{mass of water absorbed}}{\text{initial mass of bead}} \times 100$


Calculate the percentage increase in the mass of the bead after 2 hours. Give your answer to the nearest whole number.

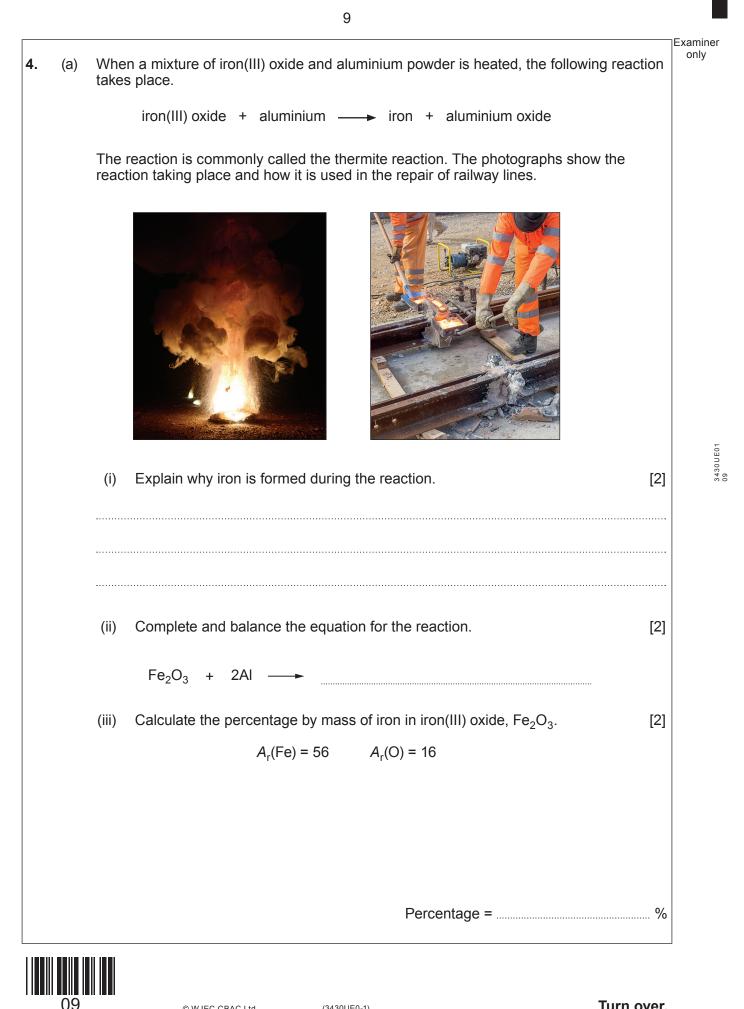
Percentage increase =%


(ii) What property of polymer gels does the figure calculated in part (i) demonstrate? [1]

[1]

Examiner only (b) Complete the equation for the reaction between hydrochloric acid and sodium carbonate by writing the formula of sodium carbonate on the dotted line • putting a number into the box to balance the equation [2] • HCI + $2NaCI + H_2O + CO_2$ (C) Silver nitrate solution is used to identify the chloride ions present in hydrochloric acid. (i) Give the observation made when silver nitrate solution is added to hydrochloric acid. [1] (ii) Put a tick (\mathcal{J}) in the box next to the correct ionic equation for the reaction between silver nitrate and hydrochloric acid. [1] $Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(aq)$ 3430UE01 05 Ag⁻(aq) + Cl⁺(aq) → AgCl(aq) Ag⁺(aq) Cl[−](aq) → AgCl(s) + Ag⁺(s) + Cl[−](s) → AgCl(s) $Ag^{-}(aq) + CI^{+}(aq) \longrightarrow AgCI(s)$ 8

3.	(a)	The sodiu	diagram shows the transfer of electrons that takes place during the formation of um oxide.	Examiner only
			Na Na Na	
		(i)	Name the type of bonding present in sodium oxide.	[1]
		(ii) 	State what must be done to sodium oxide so that it will conduct electricity. Explain your answer.	[2]



(b)	(i)	Draw a dot and cross diagram to show the bonding in a molecule of tetrafluoromethane, CF_4 .	[2]	Examiner only
		carbon (C) 2,4 fluorine (F) 2,7		
				3430 U E 0 1 0 7
	(ii)	Tetrafluoromethane is a simple covalent substance and is a gas at room		343
	()	temperature.		
		Explain why it has a low boiling point.	[2]	
	.			
	.			
				-

(c)	Nanoparticles are extremely small particles that have different properties to the same material at bulk size. Nano-scale titanium dioxide is commonly used in sunscreen and in self-cleaning windows.	Examine only
	<image/>	
	Give the reason why nano-scale titanium dioxide is effective in each of these uses. [2] Sunscreen	
	Self-cleaning windows	
		9

Examiner only Clare and Frankie were investigating the reactivity of metals. They carried out a series of displacement reactions in a dropping tile. In each test they placed a small piece of (b) metal into a solution of the nitrate of a different metal as shown. copper tin iron zinc zinc nitrate solution iron(II) nitrate solution tin nitrate solution copper(II) nitrate solution dropping tile It was not necessary to carry out all of the tests. Place crosses (X) on the diagram (i) to show which tests did not need to be carried out. Explain your choice. [2]

© WJEC CBAC Ltd.

(ii) The equation shows the reaction between iron and copper(II) nitrate solution.

2Fe + $3Cu(NO_3)_2 \longrightarrow 2Fe(NO_3)_3 + 3Cu$

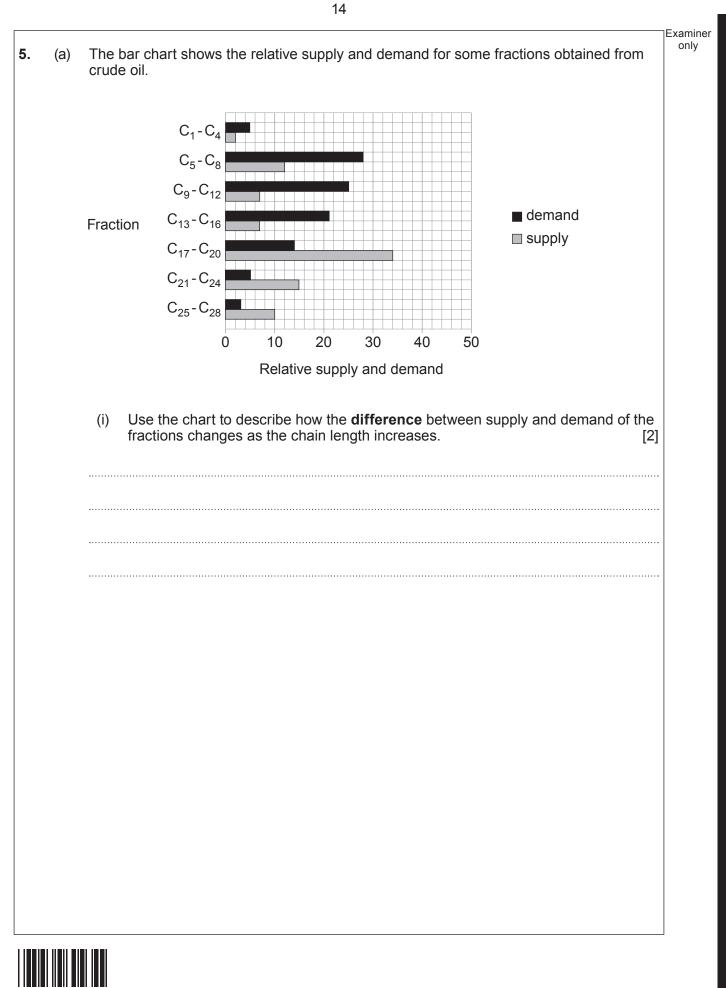
Use the equation to calculate the maximum mass of copper that you would expect to be formed when 0.224 g of iron is added to excess copper(II) nitrate solution.

 $A_{\rm r}({\rm Fe}) = 56$ $A_{\rm r}({\rm Cu}) = 63.5$

Examiner only

[3]

(c) The photograph s laboratory.	shows how the electrolysis of zinc chloride can be carried out in t	he
(i) Balance the	e equation that represents the reaction taking place at the anode.	
Use the eq	uation to explain the meaning of the term oxidation.	[2]
	$CI^- \longrightarrow CI_2 + e^-$	
the process • Reco	ord the mass of the cathode before placing it into the electrolyte	uring
Remo	the process to run to completion ove the cathode from the electrolyte and record its new mass ulate the increase in mass	
	often found that the increase in mass measured using this method er than expected. Suggest a reason for this.	l is [1]
	jest why this method cannot be used to measure the mass of chlouced during the process.	orine [1]


© WJEC CBAC Ltd.

BLANK PAGE

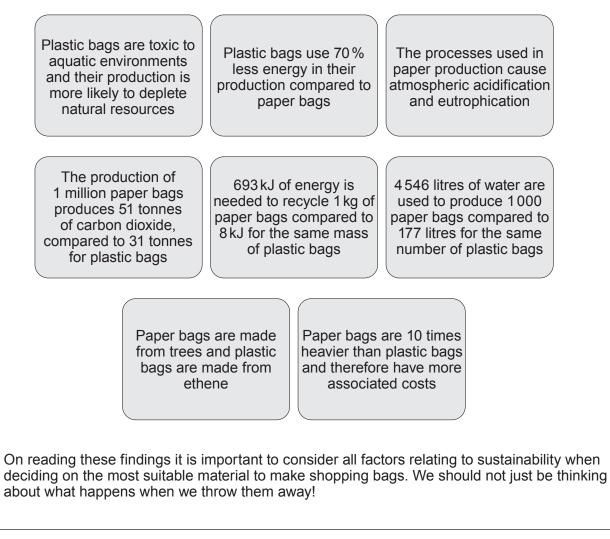
13

PLEASE DO NOT WRITE ON THIS PAGE

((ii)	The process of cracking is used to overcome the problem of insufficient suppl some fractions.	ly of
		I. State what is meant by <i>cracking</i> and give the conditions needed for the process.	[2]
		II. When hydrocarbon X is cracked, it forms hexene, ethene and butane. Give the molecular formula of hydrocarbon X to complete the equation. $\longrightarrow C_6H_{12} + 2C_2H_4 + C_4H_{10}$ hydrocarbon X hexene ethene butane	[1]
(b) C	` ⊔	₀ has two isomers.	
	(i)	Give the meaning of the term <i>isomers</i> .	[1]
			[1]
	(i)	Give the meaning of the term <i>isomers</i> .	
	(i)	Give the meaning of the term <i>isomers</i> .	

6. It is well known that plastic bags are a major source of litter. These bags can exist for a very long time, ranging from tens of years in the natural environment up to a thousand years in landfill.

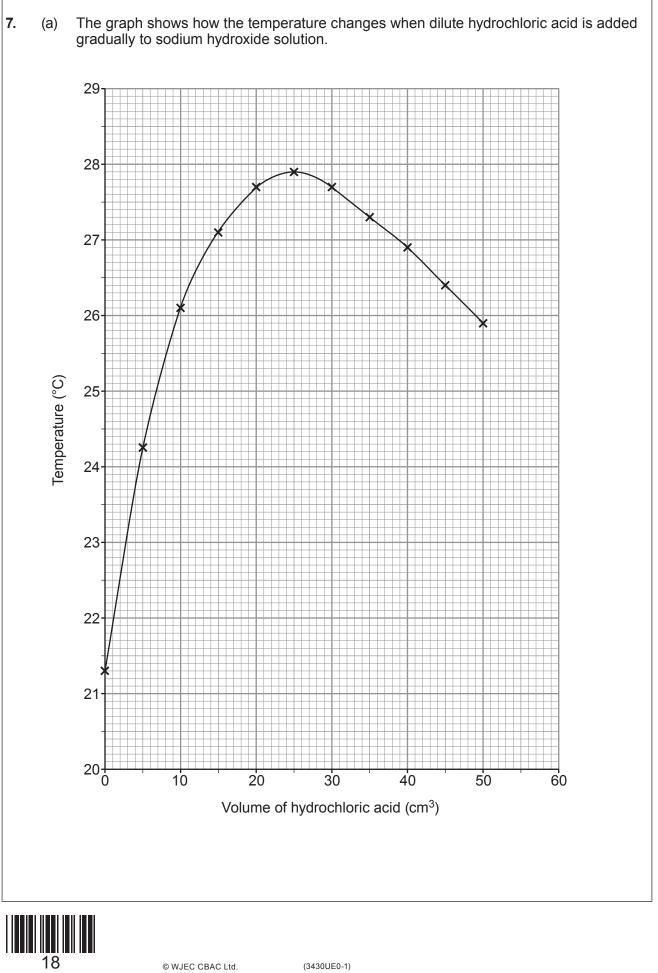
The use of plastic bags is now banned in some countries. These countries commonly use bags made from paper or cotton, which do not cause the same litter problem as plastic bags.



Paper or plastic?

Most people assume that a paper bag is better for the environment, however because paper bags are almost ten times heavier than plastic bags, they produce a greater mass of waste. On the other hand, because paper bags are biodegradable they do not lead to the same problem with litter as plastic bags.

When deciding whether paper is more suitable than plastic for making shopping bags, information from life cycle assessments (LCAs) of both materials must be taken into consideration.


Some of the findings from LCAs of paper and plastic bags are shown below.

se the information from the LCAs to tick oposes the use of paper bags in preferer npact of waste on marine life /ater consumption in production		the factors supports of Opposes use of paper bags	or [3]
later consumption in production			
nergy used in production			
arbon footprint generated in production			
nergy used in recycling			
ost of transporting waste			
he use of which type of bag is more likely uildings?	y to be linked to the	erosion of limestone	
ive a reason for your answer.			[1]
/pe of bag			
eason			
	arbon footprint generated in production nergy used in recycling ost of transporting waste ne use of which type of bag is more likely iddings? ive a reason for your answer.	arbon footprint generated in production	arbon footprint generated in production

	Explain the temperature changes shown on the graph and relate these to the chang	e	ڊ
	pH during the reaction. You do not need to include equations in your answer. [6 Q	E	-
			• •
			• •
)	The reaction between hydrochloric acid and sodium hydroxide produces sodium chloride and water.		
	Give the ionic equation to show how water is formed during this reaction.		
	END OF PAPER		

Turn over.

7

Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

© WJEC CBAC Ltd.

BLANK PAGE

21

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Aluminium Al^{3^+} bromide Br^- ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- barium Ca^{2^+} fluoride F^- calcium Ca^{2^+} hydroxide OH^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ nagnesium Mg^{2^+} sulfate $SO_4^{2^-}$ ootassium K^+ silver Ag^+ sodium Na^+ Ag^+ Ag^+			OSITIVE IONS NEGATI	
ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ nagnesium Mg^{2^+} hickel Ni^{2^+} ootassium K^+ Ag^+ Na^+	Name	Formula	Name	Formula
barium Ba^{2+} chloride Cl^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Sifate$ SO_4^2- ootassium K^+ Ag^+ Ag^+ solum Na^+ $Sifate$ $Sifate$ $Sifate$	aluminium	Al ³⁺	bromide	Br ⁻
calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} hickel Ni^{2+} ootassium K^+ Ag^+ Ag^+ silver Ag^+ Na^+ Ag^+	ammonium	NH_4^+	carbonate	CO3 ²⁻
copper(II)Cu2+hydroxideOH-hydrogenH+iodideI-ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi+sulfateSO42-magnesiumMg2+Ni2+SotassiumhickelNi2+K+SotassiumootassiumK2+K+silverAg+Ka+	barium		chloride	CI⁻
hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} hickel Ni^{2+} bickel Ni^{2+} K^+ for any set of the set of	calcium		fluoride	F
ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} nickel Ni^{2+} Ii^{2+} ootassium K^+ Ii^{2+} silver Ag^+ Ii^{2+} sodium Na^+	copper(II)		hydroxide	OH⁻
ron(III) Fe ³⁺ oxide O ²⁻ ithium Li ⁺ sulfate SO ₄ ²⁻ nagnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	hydrogen		iodide	1-
ron(III)Fe ³⁺ oxideO ²⁻ ithiumLi ⁺ sulfateSO ₄ ²⁻ magnesiumMg ²⁺ sulfateSO ₄ ²⁻ nickelNi ²⁺ sulfateSO ₄ ²⁻ potassiumK ⁺ sulfateSO ₄ ²⁻ silverAg ⁺ sulfateSO ₄ ²⁻	iron(II)		nitrate	NO ₃ ⁻
magnesium Mg ²⁺ nickel Ni ²⁺ ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	iron(III)		oxide	
nickel Ni ²⁺ potassium K ⁺ silver Ag ⁺ sodium Na ⁺	lithium		sulfate	SO4 ²⁻
ootassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium	Mg ²⁺		
silver Ag ⁺ sodium Na ⁺	nickel			
sodium Na ⁺	potassium	K ⁺		
	silver	Ag⁺		
zinc Zn ²⁺	sodium			
	zinc	Zn ²⁺		

				_	_		
0	Helium 2	20 Neon 10	40 Ar Argon 18	84 Kryptor 36	131 Xenon 54	222 Rn Rador 86	
~		19 F Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85	
9		16 Oxygen 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium 52	210 Po 84	
S		14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83	
4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead 82	
ი		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
				65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80	
				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	
				59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
				⁵⁹ Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
dn	Le]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key
Group	Hydrogen			55 Mn Manganese 25	99 TC Technetium	186 Re Rhenium 75	
				52 Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
				51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73	
				48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72	
				45 Sc 21	89 Yttrium 39	139 La 57	227 Actinium 89
3		9 Beryllium 4	24 Mg 12 12	40 Calcium 20	88 Strontium 38	137 Ba Barium 56	226 Ra Radium 88
~		7 Li Lithium 3	23 Na Sodium	39 X Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87

relative atomic mass

atomic number

Symbol Name Z

THE PERIODIC TABLE

24