Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430U50-1

FRIDAY, 27 MAY 2022 - MORNING

SCIENCE (Double Award)

Unit 5 – CHEMISTRY 2 FOUNDATION TIER

1 hour 15 minutes

For Examiner's use only					
Question Maximum Mark Mark Awarded					
1.	13				
2.	9				
3.	9				
4.	8				
5.	6				
6.	7				
7.	8				
Total	60				

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

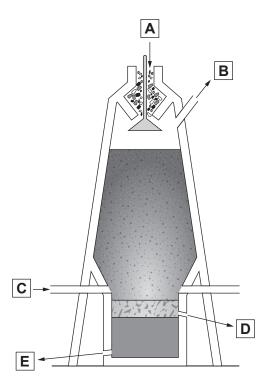
Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

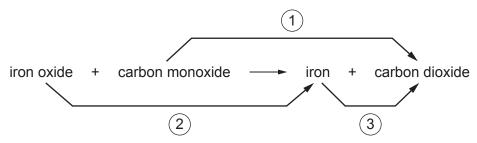
The number of marks is given in brackets at the end of each question or part-question.


Question 5 is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

(a) The diagram shows a blast furnace which is used to extract iron.
 Labels A, B, C, D and E show where substances enter and leave the furnace.



(i) Give the letter, ${f A},\,{f B},\,{f C},\,{f D}$ or ${f E},$ that shows where

iron ore enters the furnace	
waste gases leave the furnace	
slag is removed	 [3]

Examiner only

One of the main reactions inside the blast furnace is represented by the following (ii) equation.

Give the number of the arrow that shows oxidation.

[1]

(iii) Limestone is added to the furnace to remove impurities.

The chemical name for limestone is calcium carbonate.

Calcium carbonate contains the ions Ca²⁺ and CO₃²⁻.

Circle the correct formula for calcium carbonate.

[1]

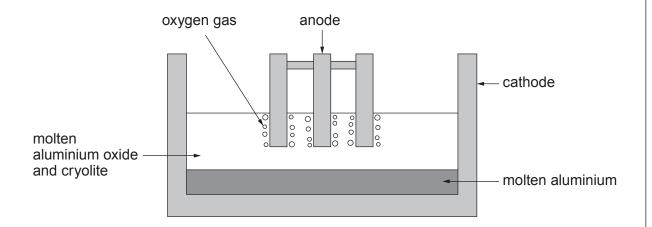
CaCO

Ca₂CO₃ CaCO₃

 $Ca(CO_3)_2$

One of the waste gases that leaves the blast furnace is carbon dioxide, CO₂. (iv)

Put a tick (/) in the box next to the diagram that best represents a carbon dioxide molecule.



© WJEC CBAC Ltd. (3430U50-1)

Turn over.

Examiner only

(b) The diagram shows an electrolysis cell used in the extraction of aluminium.

(i) Draw **one** line from each term to its correct definition.

[3]

Term Definition

anada

positive electrode

anode

a substance that removes impurities

electrolyte

using electricity to make a compound

a substance that is split up during the process

electrolysis

using electricity to split up a compound

negative electrode

© WJEC CBAC Ltd.

(3430U50-1)

(ii) <u>Underline</u> the correct word in the brackets to complete each sentence.

[3]

Cryolite is added to lower the (**density / melting point / boiling point**) of the electrolyte.

When choosing a location for an aluminium plant in the UK, it is important to be near a port to (**import / export / clean**) the aluminium ore.

At the temperature inside the cell, the aluminium is produced as a (solid / liquid / gas).

(iii) The equation for the reaction that takes place during the extraction of aluminium is given below.

Choose a number from the box to balance the equation.

2 4 6

[1]

13

2.	(a)	Hannah and Evan investigated the temperature increase when sodium hydroxide
		solution was added to dilute hydrochloric acid.

The method they used to collect their results is given below.

- 1. Measure 25 cm³ of hydrochloric acid into a polystyrene cup.
- 2. Record the temperature of the hydrochloric acid.
- 3. Measure 25 cm³ of sodium hydroxide and add it to the hydrochloric acid.
- 4. Record the highest temperature of the mixture.
- 5. Calculate the temperature increase for the reaction.
- (i) Choose apparatus from the box to complete the following sentences.

[2]

balance	Bunsen b	urner	thermometer	measuring cylinder
	test tube	stopwate	ch tongs	beaker

	of hydrochloric acid accurately.	
	Hannah and Evan used a to measure the temperature of the mixture.	
(ii)	Give one way that Hannah and Evan could check that the method produces consistent results.	[1]

Hannah and Evan used a to measure 25 cm³

(iii) Hannah and Evan calculated a temperature increase of 17 °C.

Give the term used to describe a reaction that gives a temperature increase. [1]

.....

(b) When chlorine reacts with hydrogen, hydrogen chloride is formed.

$$\mathsf{H}-\mathsf{H} \ + \ \mathsf{CI}-\mathsf{CI} \ \longrightarrow \ \begin{array}{c} \mathsf{H}-\mathsf{CI} \\ \mathsf{H}-\mathsf{CI} \end{array}$$

The bond energies are given in the table.

Bond	Bond energy (kJ)	
Н — Н	436	
CI — CI	243	
H — CI	432	

(i) The energy needed to break the bonds in the hydrogen and chlorine molecules is 679 kJ. Show how this value is calculated. [1]

(ii) Calculate the energy released when **two** molecules of hydrogen chloride are formed. [2]

Examiner only

(iii) The energy profile diagram for the reaction between hydrogen and chlorine is given below.

Progress of reaction

Give the letter that shows

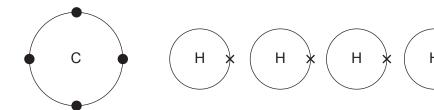
the activation energy

the overall energy change for the reaction

[2]

9

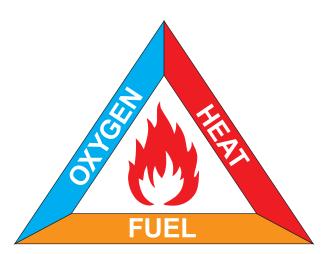
BLANK PAGE


PLEASE DO NOT WRITE ON THIS PAGE

3.	(a)		diagram shows apparatus that can be used to investigate the products formed methane gas burns. Methane has the formula $\mathrm{CH_4}$.	
m	urning iethane as		colourless liquid X limewater turns milky	p
		(i)	Name the gas present in the air that is needed for methane to burn.	[1]
		(ii)	Name the products formed.	[2]
			Colourless liquid X	
			Colourless gas Y	
		(iii)	Tick (\checkmark) the box that gives the name of the group of substances that methane belongs to.	[1]
			alkenes	
			monomers	
			polymers	
			alkanes	

- (b) Methane has the formula ${\rm CH_4}$. Its molecules consist of one carbon atom and four hydrogen atoms bonded together.
 - (i) Draw a diagram in the box to show how the atoms bond to form a methane molecule.

[2]



(ii) Give the name of this type of bonding.

[1]

.....

(c) The fire triangle can be used to explain how fires are extinguished.

The following table gives information about three different types of fire and the methods used to extinguish them.

However, each of the three fires has an **error** in **one** of the columns.

Fire	Type of fire	Firefighting method	How method works
1	chip pan fire	tea towel	removes the heat
2	bonfire	fire blanket	removes the heat
3	electrical fire	fire breaks	removes the fuel

Circle the errors for fires 1 and 2 and then correct them in the table below.

The error for fire **3** has already been circled and the correction given.

Fire	Correction
1	
2	
3	Fire breaks are used to extinguish a forest fire

9

[2]

4. (a) Supermarkets across the UK now charge customers a minimum of 5p for every plastic carrier bag supplied.

The reason for the charge is to reduce the number of plastic carrier bags used by consumers and therefore reduce waste and litter.

Since the introduction of the charge for plastic carrier bags in Wales, the number of these bags used by consumers has fallen by over 70%.

Similarly, reports in England claim that supermarkets have issued 83% fewer bags since the charge was introduced.

It is estimated that every person in the UK currently uses around 25 plastic carrier bags per year, compared to around 140 before charges were introduced.

The majority of the money retailers generate from sales of carrier bags is donated to good causes. A survey of retailers across England and Wales reported that £87 million had been donated to good causes since the introduction of the 5p charge, amounting to 4p for every bag sold.

(i) Use the information in the passage to decide whether the following statements are **true** or **false**.

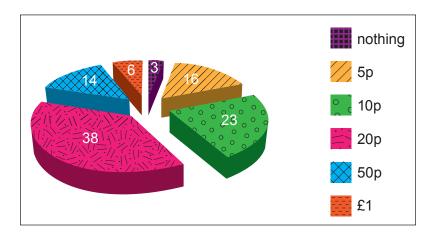
Put a tick (\mathcal{I}) in the correct column for each statement.

[3]

Statement	True	False
The number of plastic bags used in Wales and England has reduced since charging for them		
Retailers donate all the money generated from the sale of plastic bags to good causes		
Plastic bags are no longer used		
The charge for plastic bags has totally stopped their use in Wales		
The use of plastic bags leads to environmental problems		
The charge for plastic bags is beneficial to good causes		

© WJEC CBAC Ltd.

(3430U50-1)


Examiner only

(ii) How many fewer plastic bags will each person in the UK use over a 5-year period, based on the estimated number of bags used per person before and after the charge was introduced? [2]

Number of bags =

(b) More than half of all consumers still regularly buy plastic bags.

The pie chart shows the results of a survey where 100 consumers were asked what is the most they would pay for a plastic bag.

Give the number of consumers that would be prepared to pay **more than** 5p for a plastic bag.

Number of consumers =

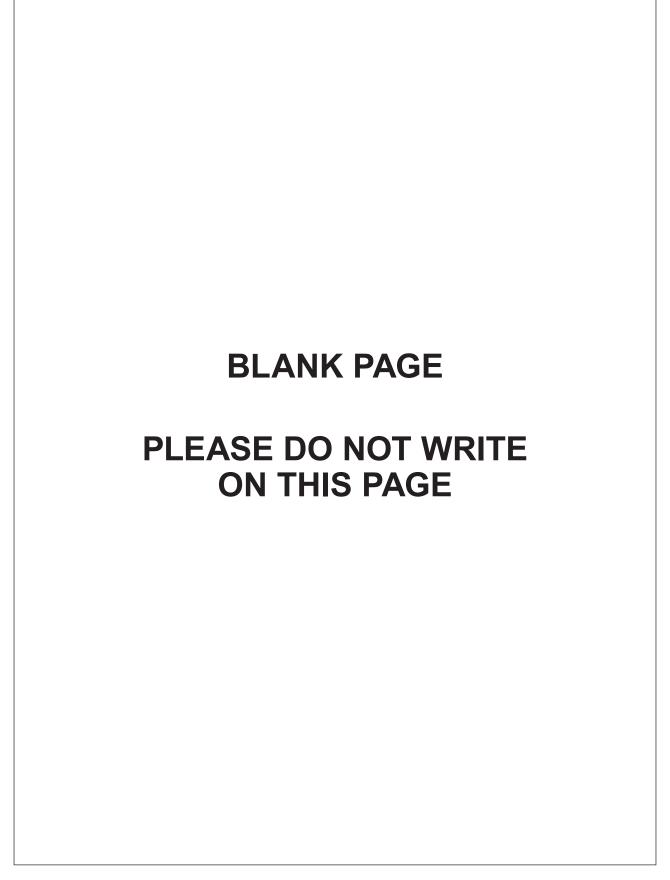
(c) Give **one** property of plastics which leads to long-term environmental problems. [1]

8

[2]

6

5.	Seren and Ethan	carried out an	experiment to comp	pare the reactivities	of three metals.


The table shows the results obtained when each metal was placed into solutions of the nitrates of the other metals.

A tick (\checkmark) indicates that a reaction took place and a cross (\times) indicates that no reaction took place.

	magnesium	iron	copper
magnesium nitrate		×	×
iron(II) nitrate	>		×
copper(II) nitrate	1	1	

reactions taking place. Include equations in your answer. [6 QER	e {]

6. Polymer gels are commonly used in disposable nappies.

A company that manufactures disposable nappies was investigating the effect of temperature on the mass of water the polymer gel in their nappies is able to absorb.

(a) The results collected using water at 40 °C are given below. The initial mass of the polymer gel bead was 0.035 g.

Time (hours)	Mass of bead (g)	Mass of water absorbed by bead (g) (to 1 decimal place)		
0	0.035	0.0		
2	4.048	4.0		
4	6.030	6.0		
6	7.280	7.2		
8	7.891	7.9		
10	8.181	8.1		
12	8.181	8.1		

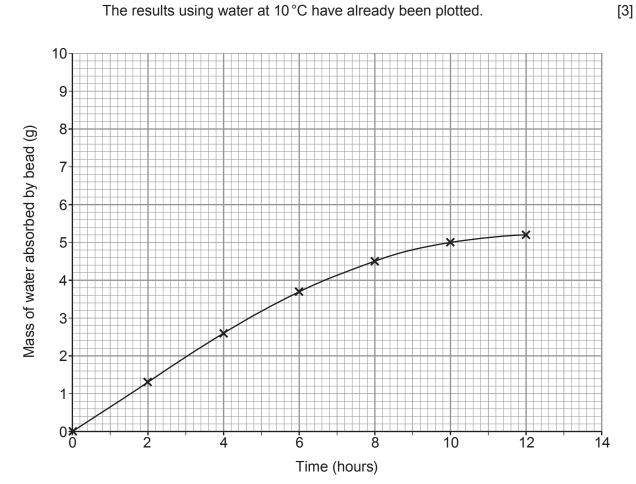
(i) The percentage increase in the mass of the bead is calculated using the following equation.

percentage increase =
$$\frac{\text{mass of water absorbed}}{\text{initial mass of bead}} \times 100$$

Calculate the percentage increase in the mass of the bead after 2 hours. Give your answer to the nearest whole number.

Percentage	increase =	%
1 Crocintage	II ICI Casc	 70

(ii) What property of polymer gels does the figure calculated in part (i) demonstrate?

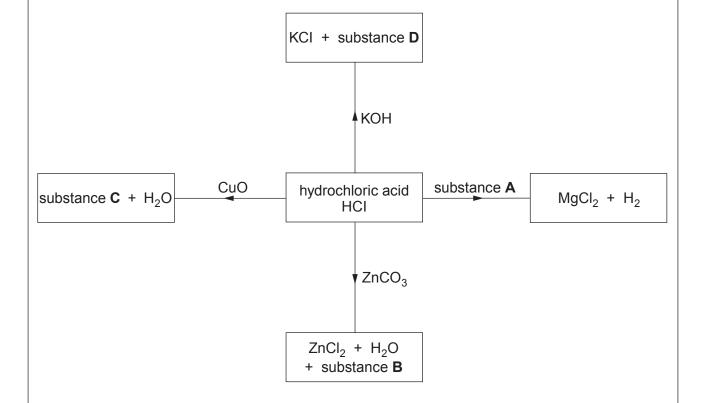

[1]

[1]

Examiner only

On the grid below, plot the results using water at $40\,^{\circ}\text{C}$ and draw a suitable line. Use the mass of water absorbed by the bead to 1 decimal place. (b)

The results using water at 10 °C have already been plotted.


(ii)	Give two differences between the absorbing properties of the bead using water	ſ
	at 10 °C and at 40 °C.	[2]

Difference 2

7

Examiner only

- **7.** The reactions of acids with metals, bases and carbonates are summarised in the following equations.
 - acid + metal \rightarrow salt + hydrogen
 - acid + base → salt + water
 - acid + carbonate → salt + water + carbon dioxide
 - (a) The diagram shows some reactions of hydrochloric acid, HCl.

(i)	Give the names of substances A and B .	[2]
	Substance A	

Substance A

Substance B

(ii) Give the **formulae** of substances **C** and **D**. [2]

Substance C

Substance D

© WJEC CBAC Ltd.

(3430U50-1)

- (b) Complete the equation for the reaction between hydrochloric acid and sodium carbonate by
 - writing the formula of sodium carbonate on the dotted line

putting a number into the box to balance the equation

[2]

HCI + 2NaCI + H₂O + CO₂

(c) Silver nitrate solution is used to identify the chloride ions present in hydrochloric acid.

Give the observation made when silver nitrate solution is added to hydrochloric acid.

(ii) Put a tick (✓) in the box next to the correct ionic equation for the reaction between silver nitrate and hydrochloric acid.

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(aq)$$

$$Ag^{+}(aq) + CI^{-}(aq) \longrightarrow AgCI(s)$$

 $Ag^{-}(aq) + CI^{+}(aq) \longrightarrow AgCI(aq)$

$$Ag^{+}(s) + Cl^{-}(s) \longrightarrow AgCl(s)$$

$$Ag^{-}(aq) + CI^{+}(aq) \longrightarrow AgCI(s)$$

END OF PAPER

8

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
]
		••
		••
		[
		[

FORMULAE FOR SOME COMMON IONS

POSITIVE IONS		NEGATIVE IONS		
Name Formula		Name	Formula	
aluminium	Al ³⁺	bromide	Br ⁻	
ammonium	NH ₄ ⁺	carbonate	CO ₃ ²⁻	
barium	Ba ²⁺	chloride	CI ⁻	
calcium	Ca ²⁺	fluoride	F-	
copper(II)	Cu ²⁺	hydroxide	OH-	
hydrogen	H ⁺	iodide	1-	
iron(II)	Fe ²⁺	nitrate	NO_3^-	
iron(III)	Fe ³⁺	oxide	0 ²⁻ SO ₄ ²⁻	
lithium	Li⁺	sulfate	SO ₄ ²⁻	
magnesium	Mg ²⁺		•	
nickel	Ni ²⁺			
potassium	K ⁺			
silver	Ag^{t}			
sodium	Na ⁺			
zinc	Zn ²⁺			

		_ o	o o c	on .	r.r. iton	2 Φ O ↔	Z L	
	0	4 T H 2				Xe Xe Xenon 54		
	_		19 F Fluorine 9	35.5 CI Chlorine 17	80 Br Bromine	127 	210 At Astatine 85	
	9		16 O Oxygen 8	32 S Sulfur 16	79 Se Selenium 34	128 Te Tellurium 52	210 Po Polonium 84	
	c)		14 N Nitrogen 7	31 P Phosphorus 15	75 As Arsenic	Sb Antimony 51	209 Bi Bismuth	
	4		12 C Carbon 6	28 Silicon 14	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead 82	
	ო		11 B Boron 5	27 AI Aluminium 13	70 Ga 31	115 In Indium 49	204 TI Thallium 81	
щ					65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
'ABL					63.5 Cu Copper 29	Ag Silver	Au Au Gold 79	
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
RIO					59 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium 77	
THE PERIODIC TABLE	Group	C.	7		56 Fe Iron 26	101 Ruthenium 44	190 Os Osmium 76	Key
Ŧ	Gro	Hydrogen			55 Mn Manganese 25	99 Tc	186 Re Rhenium 75	
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
					48 Ti Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
					Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57	Actinium 89
	7		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium 20	88 Sr Strontium 38	137 Ba Barium 56	226 Ra Radium 88
	~		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87

relative atomic mass

atomic number

© WJEC CBAC Ltd. (3430U50-1)