Surname	•
---------	---

First name(s)

wjec cbac

3430UB0-1

GCSE

Z22-3430UB0-1

FRIDAY, 17 JUNE 2022 – AFTERNOON

SCIENCE (Double Award)

Unit 2 – CHEMISTRY 1 HIGHER TIER

1 hour 15 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	6	
3.	6	
4.	10	
5.	6	
6.	6	
7.	8	
8.	9	
Total	60	

ADDITIONAL MATERIALS

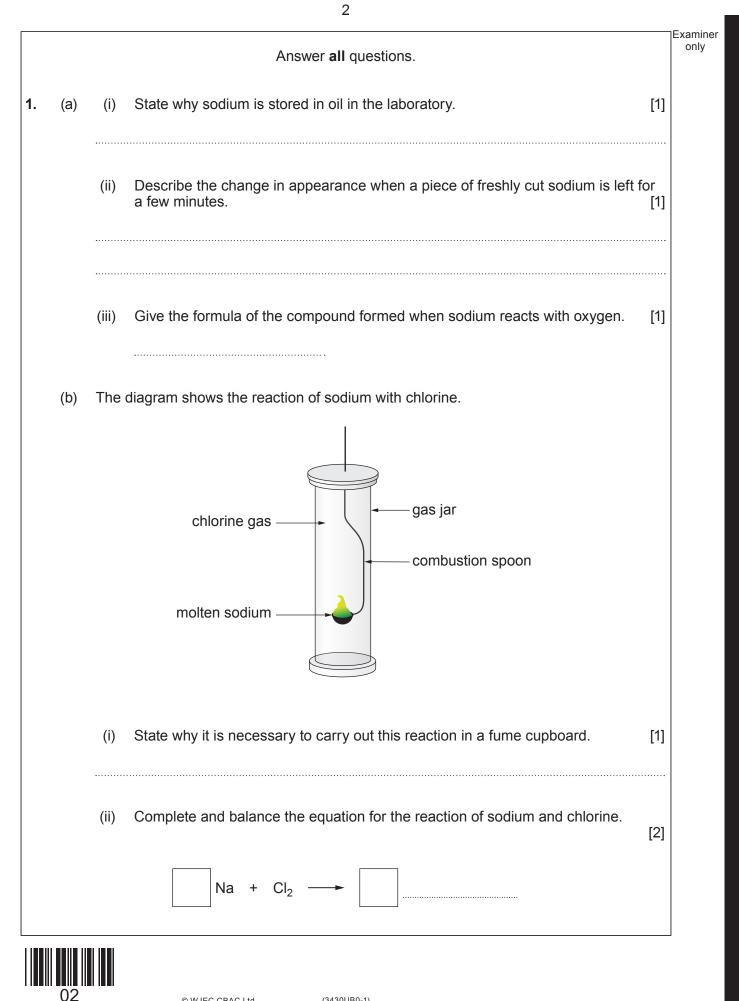
In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid. You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

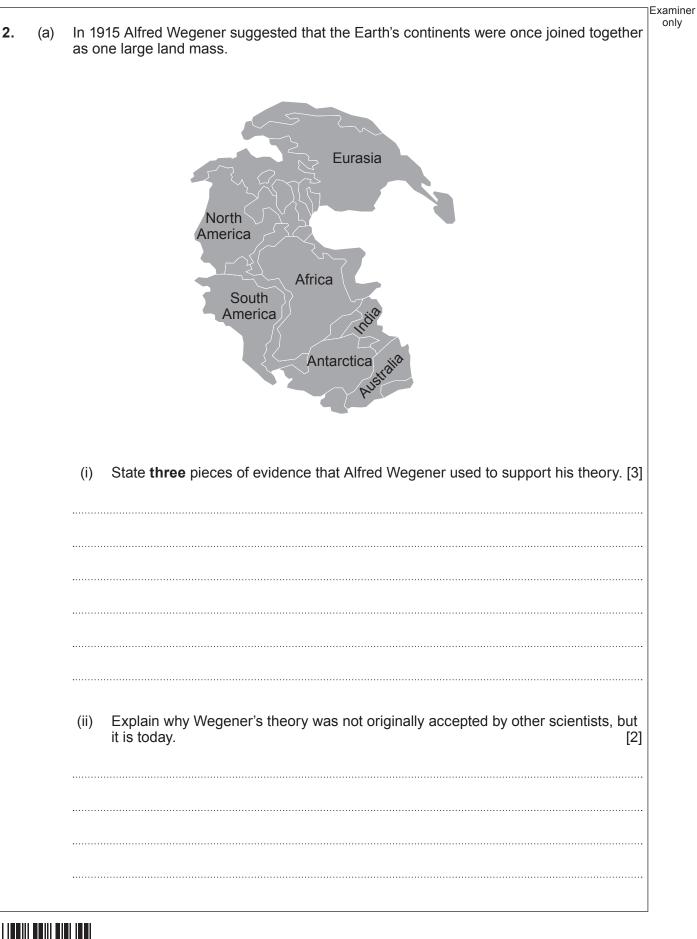
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.


INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **5** is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.



fluorine -220 -188 explosive chlorine -101 -34 very fast bromine -7 59 quite fast iodine 114 slow (i) Put a tick (✓) in the box next to the most likely boiling point for iodine. -25 °C 25 °C 100 °C 150 °C (ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron. Give a reason for your answer.
bromine -7 59 quite fast iodine 114 slow (i) Put a tick (/) in the box next to the most likely boiling point for iodine. -25 °C 25 °C 100 °C 150 °C (ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron.
iodine 114 slow (i) Put a tick (I) in the box next to the most likely boiling point for iodine. -25 °C 25 °C 100 °C 150 °C (ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron.
 (i) Put a tick (✓) in the box next to the most likely boiling point for iodine. -25 °C 25 °C 100 °C 150 °C (ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron.
-25 °C 25 °C 100 °C 150 °C (ii) Astatine lies below iodine in Group 7. State how you would expect astatine to react with hot iron.

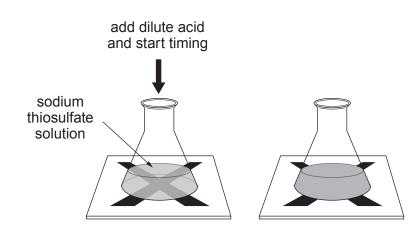
3430UB01 03

	5	
(b)	What type of destructive event is likely to happen at a conservative plate boundary? [1]	Examiner only
		6

3430UB01 05

			·	
	Element	Electror	nic structure	
	A		2	
	В		2,6	
	С		2,8,1	
	D		2,8,7	
	E		2,8	
	F	:	2,8,6	
Ex	plain your choice, refer	s found in Group 6 and Pe ring to electronic structure F are chemically inert?		āble? [2]
Ex (b) Wr	plain your choice, refer	ring to electronic structure		
Ex (b) Wr Ex (c) Ele	plain your choice, refer nich two of elements A plain your choice, refer	ring to electronic structure	rons and isotope 2 has	[2] [2] 20 neutrons.
Ex (b) Wr Ex (c) Ele	plain your choice, refer nich two of elements A plain your choice, refer	 -F are chemically inert? ring to electronic structure res. Isotope 1 has 18 neutronic 	rons and isotope 2 has	[2] [2] 20 neutrons.
Ex (b) Wr Ex (c) Ele	plain your choice, refer nich two of elements A plain your choice, refer ement D has two isotop omplete the table by give	ring to electronic structure -F are chemically inert? ring to electronic structure es. Isotope 1 has 18 neutring the atomic number and	rons and isotope 2 has d mass number of both	[2] [2] 20 neutrons.

BLANK PAGE


7

PLEASE DO NOT WRITE ON THIS PAGE

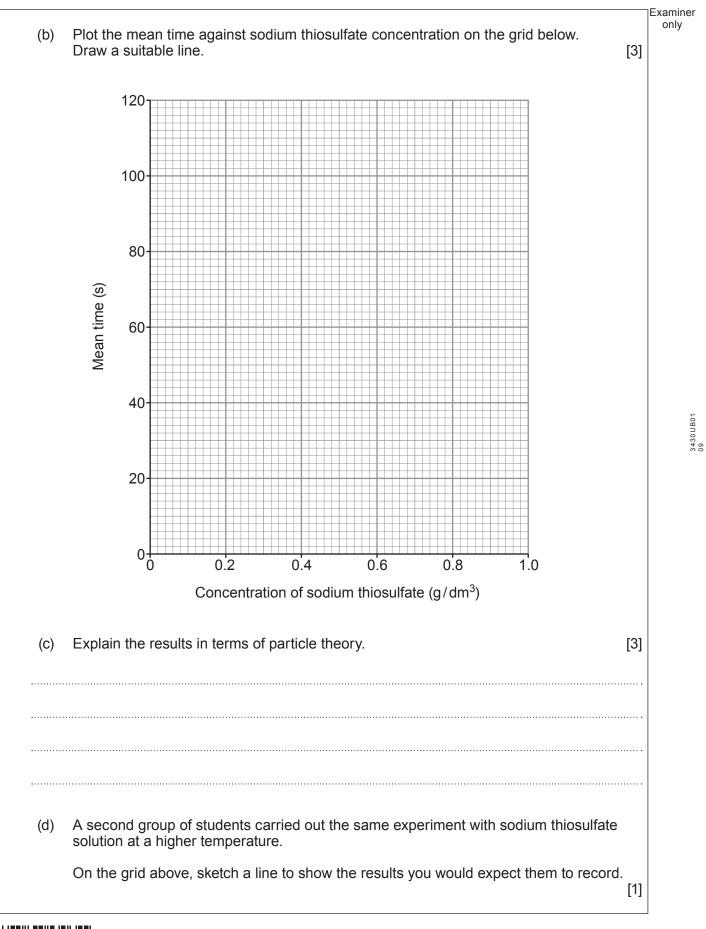
4. Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate. The precipitate causes the solution to go cloudy.

The rate of the reaction can be measured by placing a cross beneath the flask and measuring the time taken for the cross to disappear.

Gareth and Sion studied the effect of sodium thiosulfate concentration by carrying out the reaction with thiosulfate of five different concentrations. They tested each concentration three times.

Their results are shown in the table below.

Concentration of sodium thiosulfate (g/dm ³)	Time 1 (s)	Time 2 (s)	Time 3 (s)	Mean time (s)
0.2	114	113	112	113
0.4	74	70	72	72
0.6	40	38	57	39
0.8	21	23	22	22
1.0	14	16	15	15


(a) When calculating the mean times, they ignored one of the values recorded.

Circle this value in the table.

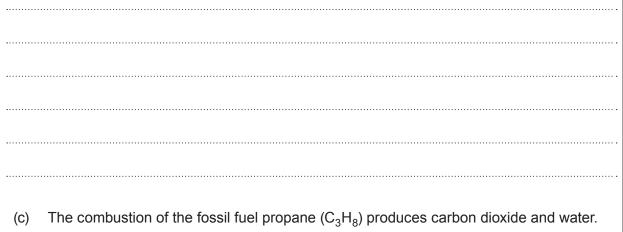
[1]

Examiner only

	IU	
(e)	The stock solution of sodium thiosulfate used in both experiments was made by dissolving 1.0 g of the solid in 1 dm ³ of water.	Examir only
	Calculate the number of moles of sodium thiosulfate $(Na_2S_2O_3)$ in 1.0 g.	
	Give your answer to two significant figures.	2]
	$A_{\rm r}({\rm Na}) = 23$ $A_{\rm r}({\rm S}) = 32$ $A_{\rm r}({\rm O}) = 16$	
	Number of moles = m	
		10

Calcium ions (Ca ²⁺) and magnesium ions (Mg ²⁺) both cause hardness in water. Both can be present in temporary hard water and permanent hard water. It is the other ions present which cause hardness to be temporary or permanent.	Examii only
State the difference between the composition of temporary hard water and permanent hard water. Describe a method to distinguish between them in the laboratory. Explain how this method works. [6 QER]	
	6
	0

Examiner only Levels of oxygen and carbon dioxide in the atmosphere are maintained at approximately constant values. 6. Identify the natural processes that help maintain the balance of oxygen and carbon dioxide levels in the atmosphere. Describe briefly how this is achieved. (a) [3]


© WJEC CBAC Ltd.

(b) The table shows the amount of carbon dioxide produced by the United States of America and India between 1955 and 2015.

13

Veer	Carbon dioxide emissions (million tonnes)			
Year	USA	India		
1955	700	100		
1965	800	250		
1975	1150	250		
1985	1150	450		
1995	1150	600		
2005	1400	900		
2015	1300	1850		

Use the information in the table to compare the increase in carbon dioxide emissions in the United States of America and India between 1955 and 2015. [2]

c) The combustion of the fossil fuel propane (C₃H₈) produces carbon dioxide and water.
 Balance the equation for this reaction.

[1]

6

Examiner only

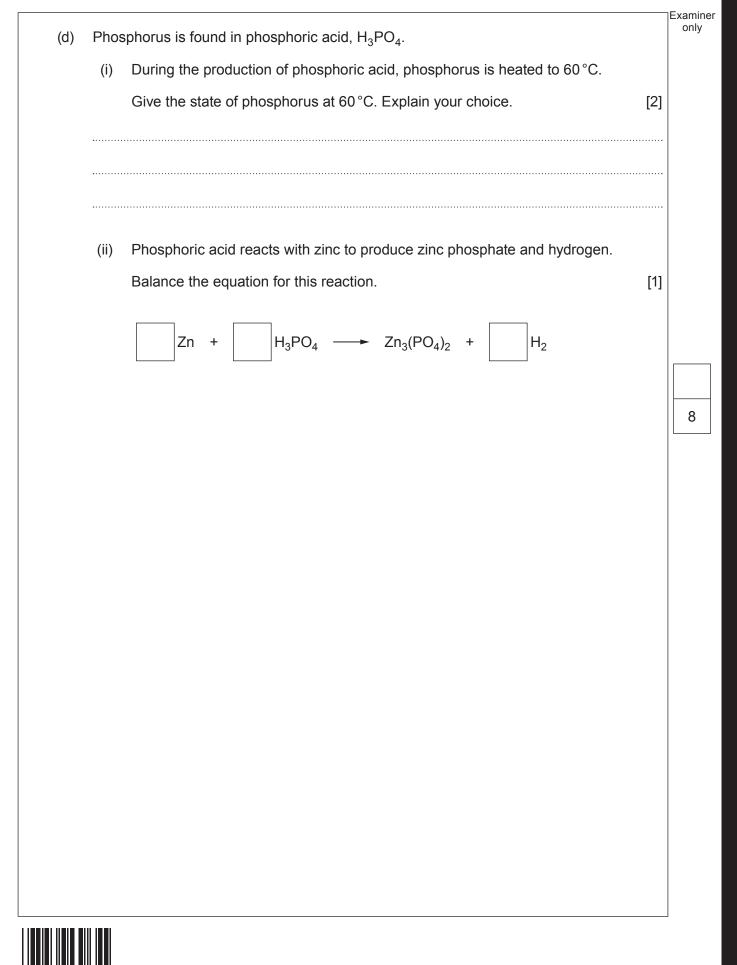
Element	Melting point (°C)	Boiling point (°C)	Density (g/cm³)	Appearance	Malleability	Conductivity
Na	98	882	1.00	shiny solid	malleable	good
Mg	650	1091	1.75	shiny solid	malleable	good
Al	660	2470	2.70	shiny solid	malleable	good
Si	1410	3265	2.35	shiny solid	brittle	semiconductor
Р	44	281	1.80	red solid	brittle	poor
S	113	444	2.05	yellow solid	brittle	poor
CI	-101	-34	0.003	green gas	n/a	poor

7. The table shows some properties of elements in Period 3 of the Periodic Table.

(a) One of the elements is difficult to classify as a metal or non-metal.

Identify this element and give your reasoning.

[2]


14

© WJEC CBAC Ltd.

Examiner only

the elements across Period 3. [2] The density of metals and non-metals increases [2] The boiling point of metals increases but the boiling point of non-metals shows no trend [2] The density of metals and non-metals increases but the boiling point of non-metals shows no trend [2] The density of metals shows no trend but the density of non-metals decreases [2] The boiling point of metals and non-metals shows no trend [2] The density of metals increases but the density of non-metals shows no trend [2] The density of metals increases but the density of non-metals shows no trend [2] The boiling point of metals shows no trend but the boiling point of non-metals decreases [2] The boiling point of metals shows no trend but the boiling point of non-metals decreases [2] The density of metals decreases but the density of non-metals shows no trend [2] The density of metals decreases but the density of non-metals [2] The density of metals decreases but the density of non-metals [2] The density of metals decreases but the density of non-metals [2] The density of metals decreases but the density of non-metals [2] The density of metals decreases but the density of non-metals [2] The density of metals decreases [2			
The boiling point of metals increases but the boiling point of non-metals shows no trend The density of metals shows no trend but the density of non-metals decreases The boiling point of metals and non-metals shows no trend The density of metals increases but the density of non-metals shows no trend The boiling point of metals shows no trend but the boiling point The boiling point of metals shows no trend but the boiling point The boiling point of metals shows no trend but the boiling point The boiling point of metals shows no trend but the boiling point The boiling point of metals shows no trend but the boiling point of non-metals decreases The density of metals decreases but the density of non-metals shows no trend The density of metals decreases but the density of non-metals Chargon is the next element in Period 3 after chlorine, Cl. State why it is not possible to predict a melting point for argon using the information in	(b)		
non-metals shows no trend The density of metals shows no trend but the density of non-metals decreases The boiling point of metals and non-metals shows no trend The density of metals increases but the density of non-metals shows no trend The boiling point of metals shows no trend but the boiling point of non-metals decreases The boiling point of metals shows no trend but the boiling point of non-metals decreases The density of metals decreases but the density of non-metals shows no trend Che density of metals decreases The density of metals decreases but the density of non-metals shows no trend Che density of metals decreases Che density of metals decreases but the density of non-metals shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metals Shows no trend Che density of metals decreases but the density of non-metal		The density of metals and non-metals increases	
non-metals decreases			
The density of metals increases but the density of non-metals shows no trend			
shows no trend		The boiling point of metals and non-metals shows no trend	
 of non-metals decreases The density of metals decreases but the density of non-metals shows no trend (c) Argon is the next element in Period 3 after chlorine, Cl. State why it is not possible to predict a melting point for argon using the information in 			
 shows no trend Argon is the next element in Period 3 after chlorine, Cl. State why it is not possible to predict a melting point for argon using the information in 			
State why it is not possible to predict a melting point for argon using the information in			
	(C)	Argon is the next element in Period 3 after chlorine, Cl.	

BLANK PAGE

17

PLEASE DO NOT WRITE ON THIS PAGE

_
[2]
up 2 [2]

Examiner only Sodium reacts with water to produce sodium hydroxide and hydrogen. The equation for (b) this reaction is shown. $2Na(s) + 2H_2O(l) \longrightarrow 2NaOH(aq) + H_2(g)$ Calculate the mass of sodium needed to produce 11.2g of hydrogen gas. [3] $A_{\rm r}({\rm Na}) = 23$ $A_{\rm r}({\rm H}) = 1$ Mass of sodium = g Group 2 metals react in a similar way with water as Group 1 metals. (C) The word equation for the reaction of calcium and water is shown. calcium + water ---- calcium hydroxide + hydrogen Write the balanced symbol equation for this reaction. [2] 9 **END OF PAPER**

19

Turn over.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

21

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

22

PLEASE DO NOT WRITE ON THIS PAGE

aluminium Al^{3^+} bromide Br^- ammonium NH_4^+ carbonate $CO_3^{2^-}$ parium Ba^{2^+} chloride CI^- parium Ca^{2^+} fluoride F^- calcium Ca^{2^+} hydroxide OH^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ nagnesium Mg^{2^+} sulfate $SO_4^{2^-}$ potassium K^+ silver Ag^+ sodium Na^+	POSITIV	EIONS	NEGATI	VE IONS
ammonium NH_4^+ carbonate $CO_3^{2^-}$ barium Ba^{2^+} chloride CI^- calcium Ca^{2^+} fluoride F^- copper(II) Cu^{2^+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2^+} nitrate NO_3^- ron(III) Fe^{3^+} oxide O^{2^-} ithium Li^+ sulfate $SO_4^{2^-}$ magnesium Mg^{2^+} sulfate $SO_4^{2^-}$ ootassium K^+ Ag^+ Ag^+ sodium Na^+ Ag^+ Ag^+	Name	Formula	Name	Formula
barium Ba^{2+} chloride Cl^- calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ni^{2+} $Sifate$ SO_4^2- ootassium K^+ Ag^+ Na^+	aluminium	Al ³⁺	bromide	Br ⁻
calcium Ca^{2+} fluoride F^- copper(II) Cu^{2+} hydroxide OH^- nydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} hickel Ni^{2+} ootassium K^+ Ag^+ Ag^+ solum Na^+ Aa^+	ammonium	NH4 ⁺	carbonate	CO ₃ ²⁻
copper(II)Cu2+hydroxideOH-hydrogenH+iodideI-ron(II)Fe2+nitrateNO3-ron(III)Fe3+oxideO2-ithiumLi+sulfateSO42-magnesiumMg2+SUfateSO42-hickelNi2+SotassiumK+solverAg+SotassiumSotassiumNa+Na+SotassiumSotassium	barium		chloride	CI⁻
hydrogen H^+ iodide I^- ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} I^- hickel Ni^{2+} I^- ootassium K^+ silver Ag^+ sodium Na^+	calcium		fluoride	F
ron(II) Fe^{2+} nitrate NO_3^- ron(III) Fe^{3+} oxide O^{2-} ithium Li^+ sulfate SO_4^{2-} magnesium Mg^{2+} Ii^2^+ nickel Ni^{2+} potassium K^+ silver Ag^+ sodium Na^+	copper(II)	Cu ²⁺	hydroxide	OH⁻
ron(III) Fe ³⁺ oxide O ²⁻ ithium Li ⁺ sulfate SO ₄ ²⁻ magnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	hydrogen		iodide	1-
ron(III)Fe ³⁺ oxideO ²⁻ ithiumLi ⁺ sulfateSO ₄ ²⁻ magnesiumMg ²⁺ sulfateSO ₄ ²⁻ nickelNi ²⁺ potassiumK ⁺ silverAg ⁺ sodiumNa ⁺	iron(II)		nitrate	NO ₃ ⁻
magnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	iron(III)	Fe ³⁺	oxide	0 ^{2–}
magnesium Mg ²⁺ hickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	lithium	Li ⁺	sulfate	SO4 ²⁻
nickel Ni ²⁺ botassium K ⁺ silver Ag ⁺ sodium Na ⁺	magnesium	Mg ²⁺		
silver Ag ⁺ sodium Na ⁺	nickel	Ni ²⁺		
sodium Na ⁺	potassium	K ⁺		
sodium Na ⁺	silver	Ag⁺		
tinc Zn ²⁺	sodium	Na ⁺		
	zinc			

				Ħ	THE PERIODIC TABLE	RIOI	DIC T	'ABL	щ						
				Gro	Group					ო	4	2J	9	2	0
				Hydrogen	L.										4 Helium 2
]					₽ 4	12 C	4 Z	95 0	19 F	20 Ne
											Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
										27 AI	²⁸ Si	ъ ч	32 N 33	^{35.5} CI	40 Ar
										Aluminium 13	Silicon 14	Phosphorus 15		Chlorine 17	Argon 18
45 Sc	48 Ti	51	52 Cr	55 Mn		59 Co	59 Ni	63.5 Cu	65 Zn	70 Ga	73 Ge	75 As		80 Br	84 Kr
Scandium 21	Titanium 22	Vanadium 23	Chromium 24	ר Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33		Bromine 35	Krypton 36
89	91 Zr	⁹¹ ⁹³ ⁹⁶ Zr Nb Mo	96 Mo	99 TC		103 Rh	106 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb		127 	131 Xe
Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54

relative atomic mass atomic number A_r Symbol Name Z

Key

Beryllium 4

Li Lithium 3

Mg Magnesium 12

Na Sodium

(3430UB0-1)

A Potassium 19

Calcium 20

0⁴0

Rn 86

At Astatine 85

Polonium 84

Bi Bismuth

Pb 82

TI 81

Hg Mercury 80

Au Gold 79

Pt Platinum 78

Os 76

Re Rhenium

Ta Tantalum 73

Hf

La

Ba Barium 56

Strontium 38

S

Rb 37

Tungsten 74 84

Hafnium 72

Lanthanum 57

Cs 55 Fr 87 87

Actinium 89

Ra Radium 88

Iridium 77 Ir