

Qualifications

2024 Biology

Higher - Paper 2

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Higher Biology

Always apply these general principles. Use them in conjunction with the marking instructions, which identify the key features required in candidates' responses.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If a candidate response does not seem to be covered by either the principles or detailed marking instructions, and you are uncertain how to assess it, you must seek guidance from your team leader.
- (c) Do not award half marks.
- (d) Where a candidate makes an error in the first part of a question, award marks for subsequent answers that are correct with regard to this original error. Do not penalise candidates more than once for the same error.
- (e) Unless a numerical question specifically requires evidence of working to be shown, award full marks for a correct final answer (including units, if appropriate) on its own.
- (f) Candidates should not use bulleted lists to answer extended-response questions. They must respond to the 'command' word as appropriate and provide extended answers to communicate fully their knowledge and understanding. Candidate responses in the form of bulleted lists may not be able to access the full range of available marks.
- (g) In the detailed marking instructions, if a word is <u>underlined</u> then it is essential; if a word is (bracketed) then it is not essential.
- (h) In the detailed marking instructions, words separated by / are alternatives.
- (i) A correct response can be negated if the candidate includes:
 - an extra, incorrect, response
 - additional information that contradicts the correct response
- (j) Where the candidate is instructed to choose one question to answer but instead answers two questions, mark both responses and award the higher mark.
- (k) Unless otherwise required by the question, the use of abbreviations (for example DNA, ATP) or chemical formulae (for example CO2, H20) are acceptable alternatives to naming.
- (I) If a numerical answer is required and units are not given in the stem of the question or in the answer space, candidates must supply the units to gain the mark. If units are required on more than one occasion, do not penalise candidates repeatedly.
- (m) If incorrect spelling is given:
 - If the correct word is recognisable then award the mark.
 - If the word can easily be confused with another biological term then **do not** award the mark, for example glucagon and glycogen.

(n) Presentation of data:

- If a candidate provides two graphs, in response to one question, mark both and award the higher mark.
- If a question asks for a particular type of graph/chart and the candidate gives the wrong type, do not award full marks. Candidates cannot achieve the plot mark but **may** be able to achieve the mark for scale and label. If the x and y data are transposed, then do not award the scale and label mark.
- If the graph uses less than 50% of the axes then do not award the scale and label mark.
- If 0 is plotted when no data for this is given, then do not award the plot mark candidates should only plot the data given.
- (o) Only award marks for a valid response to the question asked. For example, in response to questions that ask candidates to:
 - identify, name, give or state, they need only answer or present in brief form
 - describe, they must provide a statement as opposed to simply one word
 - explain, justify, they must provide a reason for the information given
 - **compare**, they must demonstrate knowledge and understanding of the similarities and/or differences between topics being examined
 - calculate, they must determine a number from given facts, figures or information
 - predict, they must indicate what may happen based on available information
 - suggest, they must apply their knowledge and understanding to a new situation

Marking Instructions for each question

Q	Question		Expected response	Max mark	Additional guidance
1.	(a)		Translation(1)ribosome(1)	2	NOT cytoplasm
	(b)	(i)	1800	1	
		(ii)	alternative (RNA) splicing	1	NOT splicing
	(c)	(i)	his/histidine	1	
		(ii)	(results in a premature) stop codon (1)	2	
			protein would be shorter OR protein would contain fewer amino		NOT short protein NOT non-functional or different protein
			acids (1)		
2.	(a)		3187.5	1	
	(b)	(i)	deletion(1)duplication(1)	2	
		(ii)	protein is not made/missing OR gene is not expressed OR	1	NOT non-functional/different protein is made
			gene that codes for protein is removed		
	(c)	(i)	gene/section of chromosome is added from/to homologous chromosome	1	
		(ii)	beneficial/advantageous mutations can occur in one copy of the gene (1)	2	
			while the other copy of the gene can still be expressed OR		
			while the other copy of the gene can still code for protein (1)		

C	Question		Expected response	Max mark	Additional guidance
3.	(a)	(i)	Phylogenetics	1	
		(ii)	fossils (1)	2	
			sequence data (1)		
	(b)	(i)	computer/statistical	1	
		(ii)	they have a more recent common ancestor	1	
			OR		
			they diverged more recently		
			OR		
			there are fewer differences in their base sequences		
4	(a)		citric acid cycle	1	
	(b)	(i)	induced fit	1	
		(ii)	fumarate leaves so succinate can bind to the active site	1	
	(c)		Type of inhibition:Competitive(1)	2	
			Justification: malonate/it has a similar shape/structure to succinate		
			OR		
			malonate/it is complementary to the active site (1)		NOT malonate has a similar shape to the active site

Q	uestic	on	Expected response	Max mark	Additional guidance
5.	(a)		concentration/mass of glucose in media OR type/age/surface area of muscle/tissue	1	NOT amount/quantity of glucose/muscle/tissue
	(b)	(i)	2.3/2.33/2.333 / 2 ^{1/} ₃	1	
		(ii)	42	1	
	(c)		 good supply of glucose/oxygen for respiration provides ATP/energy required for temperature regulation/homeostasis 	2	
	(1)		(Any 2)	•	
	(d)		shivering (1) muscle contraction generates heat (1) OR	2	
			vasoconstriction/narrowing of blood vessels (1)		NOT blood vessels move away from the skin
			less blood flow to skin so less heat is lost (1)		
			OR		
			hair erector muscles contract/ hair raises (1)		
			traps an insulating layer of air (1)		

(Question		Expected response	Max mark	Additional guidance
6.	(a)	(i)	Any value from 5 to 5.2	1	
		(ii)	decreased heart/breathing/metabolic rate OR	1	NOT low heart rate etc NOT decreased activity
			decreased oxygen consumption/CO ₂ production/respiration/metabolic rate		
	(b)	(i)	5.5 OR 6	1	
		(ii)	Type of dormancy: predictive(1)	2	
			Reason: began before the decrease in (air) temperature		
			OR		
			began before the onset of adverse conditions (1)		
		(iii)	saves/conserves energy OR	1	NOT avoids adverse conditions
			survive when metabolic costs would be too high		
7.	(a)		150	1	
	(b)	(i)	From 0 to 175 minutes it increases from 0 to 45 g/l (1)	2	Award one mark only for increases to 175 then levels off
			From 175 minutes (to 250) it remains constant/levels off (1)		To achieve 2 marks both units must be given at least once.
		(ii)	100	1	
	(c)		ethanol concentration is 0(g/l) OR	1	NOT no nutrients left
			all ethanol has been used up		
	(d)		40	1	
8.	(a)	(i)	vector	1	
		(ii)	Allows the plasmid to replicate/make copies of itself	1	
	(b)		restriction endonuclease	1	
	(c)		Gene: antibiotic resistance (1)	2	Accept other correct examples e.g. fluorescence gene
			Explanation: transformed bacteria/they will grow/survive in the presence of antibiotic (1)		

Q	uestion	Expected response	Max mark	Additional guidance
9.	A	 complete double circulatory system two atria and two ventricles no mixing of oxygenated and deoxygenated blood blood is (pumped out) at high pressure efficient oxygen delivery to cells/tissues/organs enables/supports high metabolic rates (Any 4) 	4	NOT no mixing of blood
	В	 occurs in the absence of oxygen takes place in the cytoplasm glucose broken down/converted to pyruvate pyruvate is converted to ethanol and CO₂ pyruvate to ethanol and carbon dioxide is irreversible less ATP produced than aerobic respiration OR ATP produced OR net gain of 2 ATP (Any 4) 	4	

Q	Question		Expected response	Max mark	Additional guidance
10.	(a)	(i)	rate of photolysis	1	NOT absorbance
		(ii)	so that no other/external/sun light affects the experiment/algae OR	1	NOT so no light affects the experiment
			so that only the coloured light affects the experiment/algae		
	(b)		axes correctly labelled and scale correct (1)	2	
			points correctly plotted and joined (1)		
	(c)		blue light results in the highest rate of photolysis	1	NOT rate of photosynthesis
			OR		
			photolysis is fastest with blue light		
	(d)		green light is not absorbed/less green light is absorbed OR	2	
			green light is reflected/transmitted (1)		
			fewer/few/no hydrogen ions (to decolourise DCPIP)		
			OR		
			less/no/little photolysis/photosynthesis (1)		

Q	uestic	on	Expected response	Max mark	Additional guidance
11.	(a)	(i)	less photosynthesis OR less light absorbed for photosynthesis (1) less energy/ATP/glucose for	2	Award 1 mark for: insects spread diseases which damage the plants/strawberries when no other mark is awarded NOT insects cause disease
			growth/fruit production (1)		NOT Insects cause disease
		(ii)	(Introduce) a predator/pathogen/parasite (of the pest) OR it would prey on/eat/infect the insects/pest	1	
		(iii)	it could harm/prey on/compete with other/non-target species OR it could become invasive	1	
		(iv)	chemical and biological control OR chemical and cultural control OR cultural and biological control OR chemical, biological and cultural control	1	NOT examples
	(b)	(i)	open ends/air flow/ventilation reduce humidity	1	
		(ii)	(prevention is) more effective than treating diseased crops OR decreases use of fungicide/pesticide/chemicals OR less harmful chemicals in the environment	1	
	(c)	(i)	increased/high yield/vigour/growth rate	1	
		(ii)	too much variation in F2	1	

Q	Question		Expected response	Max mark	Additional guidance
12.	(a)		naturalised	1	
	(b)		(an introduced species which) spreads rapidly and eliminates native species	1	
	(c)		no/less/few predators/competitors/pathogens/ parasites	1	
			that were found in their native/original habitat/Central America		
	(d)	(i)	95	1	
		(ii)	native frogs: decrease close to the lake OR	2	If values are used they must be correct.
			increases further away from the lake OR		
			overall numbers decrease (1)		
			cane toads: increase close to the lake		
			OR		
			increased more closer to the lake than further away from the lake		
			OR		
			overall numbers increase (1)		

Q	uesti	on	Expected response	Max mark	Additional guidance
13.	(a)	(i)	2:7	1	
		(ii)	A - More time spent in misdirected behaviour	1	NOT lots of time spent in misdirected behaviour NOT more misdirected behaviour
	(b)		More (pigs) in each group/farm OR more groups (of pigs) in each farm	1	NOT more pigs/groups NOT repeat and calculate an average NOT more farms
	(c)		failure in sexual/parental behaviour OR	1	NOT examples
			stereotypy		
			OR		
			apathy/hysteria/altered levels of activity		
	(d)		reduced cost/cheaper/increased profit/less land required/less labour intensive	1	NOT low cost/cheap etc
			OR		
			more cost effective		
	(e)		energy is lost at each/between trophic level/levels of food chain (1)	2	
			fewer trophic levels/levels of food chain with cereal/crop production (1)		

Q	uesti	on	Expected response	Max mark	Additional guidance
14.	(a)	(i)	353 600	1	
		(ii)	can kill/catch larger prey	1	NOT can hunt larger prey
			OR less energy used per individual OR		NOT can kill/catch large prey
			more successful hunts		
	(b)	(i)	rank (order) (1) (with) dominant and subordinates (1)	2	
		(ii)	ritualistic (display) OR appeasement	1	NOT examples
		(iii)	increases the chance of dominant animal's favourable/advantageous genes being passed on to offspring	1	

Q	uestion	Expected response	Max mark	Additional guidance
Q 15	A	 1. occurs before cell division 2. DNA unwinds/untwists 3. hydrogen bonds between bases/strands break OR hydrogen bonds break separating the strands/unzipping the DNA 4. primers join to (3' end of) template DNA OR primer provides a start point for DNA replication/ DNA polymerase 5. primer is a short strand of nucleotides 6. DNA polymerase adds nucleotides to 3' end of the primer/new strand 7. complementary base pairing occurs OR A - T and C - G 8. sugar of one nucleotide joins 		Additional guidance
		phosphate of next OR sugar phosphate backbone forms 9. leading strand is replicated continuously 10. lagging strand is replicated in fragments/discontinuously 11. (DNA) ligase joins fragments 12. two identical DNA molecules produced. Any 8		

Q	uestio	n	Expected response	Max mark	Additional guidance
15.	В		 population/species is split/divided/separated (by an isolation barrier/mechanism) isolation barriers can be geographical, ecological or behavioural prevents one population breeding with the other population 	8	All 3 barriers required
			OR		
			prevents populations interbreeding		NOT prevents populations breeding
			OR		
			 prevents gene flow between populations 4. geographical leads to allopatric speciation 5. ecological/behavioural leads to sympatric speciation 6. different mutations occur on each side of barrier/in each population 7. some mutations may be beneficial/advantageous 8. different selection pressures exist in each population 9. natural selection occurs 10.some individuals survive and pass on favourable alleles/genes to offspring 		
			OR		
			 (natural selection is) the non-random increase in frequency of DNA sequences/alleles that increase survival 11. populations can no longer breed with each other/ interbreed to produce fertile young 12. (this results in) two/different/new species 		NOT populations can no longer breed to produce fertile young

[END OF MARKING INSTRUCTIONS]