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1 The 4th and 5th terms of a geometric progression are  – 401
2  and  303

8  respectively.

 (i) Find the common ratio. [3]
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 (ii) Find the value of the first term.  [2]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (iii) Find the sum to infinity for this series.  [2]
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2 Differentiate the following with respect to x, simplifying your answer where possible.

 (i) y = 3x (2x + 5)4 [4]
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 (ii) y = x – 7
5x2 + 4

 [4]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (iii) y = (1 + ln 3x)5 [4]
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3 (a) (i) Prove that

sec 2θ cos θ ≡ cos θ
2cos2 θ − 1

 [3]
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  (ii) Hence find the exact solutions of

sec 2θ cos θ = 1  0G H I JθG H I J2π [5]
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 (b) A new ice cream shop is opening and a designer has created a logo as shown in 
Fig. 1 below.

  The logo consists of two congruent triangles, AOD and BOC, together with a 
sector of a circle centred at O.

  AD = BC = 6√21 cm,  OC = OD = 6 cm, AB = 60 cm

Key:
Cone

Ice cream

C

B

D

A
O

60 cm

6√21 cm
6 cm

Fig. 1

  (i) Find the exact angle DOC in radians. [4]
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  (ii) Find the exact area represented by the ice cream as shown in Fig. 1 [6]
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4 The graph of the function  y = f (x)  is sketched in Fig. 2 below.

y

x
52

A(2, 3)

O

3 ×

Fig. 2

 (i) On the axes below, sketch the graph of

y = f (x + 2) + 1

  Clearly identify the image of A and the location of the asymptote. [2]

y

xO
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 (ii) On the axes below, sketch the graph of

y = 2 f (x) + 1

  Clearly identify the image of A and the location of the asymptote. [3]

O

y

x
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 (iii) On the axes below, sketch the graph of

y = f (x
2 − 1)

  Clearly identify the image of A and the location of the asymptote. [3]

y
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5 The function  f (x)  is defined as

f (x)  = − x2  +   3x  +  10,   x ∈ 

 (i) Express  f (x)  in the form  − (x  −  a)2  +  b [3]

 
 
 
 
 
 
 
 
 
 
 

 (ii) Hence state the range of the function  f (x) [1]

 
 
 
 
 
 

 (iii) State the domain for which  f (x)  is a decreasing function. [1]
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 (iv) Given

f (x)  = − x2  +   3x  +  10,   x ∈    and

g (x)  =  | x |, x ∈ 

  sketch the composite function gf (x) on the axes below, showing clearly any 
key points. [5]

y

x
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6 (i) Write the following expression in partial fractions 

x + 5
(3 − x) (1 + x)2 [7]
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 (ii) Hence, using the binomial theorem, expand 

x + 5
(3 − x) (1 + x)2

  in ascending powers of x, up to and including the term in x2 [10]
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7 Integrate the following with respect to x

 (i) ∫ sin2 x  dx [5]
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 (ii) ∫ xe3x  dx [7]
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 (iii) ∫  x2

√ x − 2
  dx   using the substitution u2 = x − 2 [7]
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8 The ambient temperature of a restaurant remains constant at 20°C.

 θ is the temperature of food t minutes after leaving the kitchen and the rate of change 
in temperature can be modelled by the following differential equation

dθ
dt  = − k (θ − 20)

 (i) Given that food leaves the kitchen with a temperature of 140°C, find θ in terms 
of k and t. [7]
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 A food critic, visiting the restaurant, notes that it takes 2 minutes for her food to arrive 
and records the temperature of her meal as 75°C.

 Andrew is a chef in the restaurant. He believes that food from his kitchen should be 
served to customers at a temperature of at least 60°C.

 (ii) Find the time in which a waiter must have delivered the food in order to meet the 
chef’s requirement. Give your answer in minutes and seconds to the  
nearest second. [5]
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9 An implicit function is defined as

x2 y  +  2x2  =  10y  +  4

 Find the equation of the normal to the curve at the point (√2, 0).

 Leave your answer in the form  y  =  −√a x  +  b  where  a  and  b  are  
integer values. [10]
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10 Fig. 3 below shows the graph of the parametric equations

x  =  cos θ,  y  =  sin 2 θ,  0G H I JθG H I J2π

–1

–0.5

0 0.5–0.5–1 1 1.5

0.5

1

y

x

Fig. 3

 (i) Show that  
dy
dx   =  − 

2cos 2θ
sin θ  [4]



*40AMT1131*

*40AMT1131*

12948.06 R
[Turn over

 

 (ii) Determine the values of θ for the four stationary points. [5]
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 (iii) Hence find the exact Cartesian coordinates of the four stationary points. [4]
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 (iv) Find the Cartesian equation of the curve shown in Fig. 3 [4]
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 In Fig. 4 below, the area bounded by this curve, the x-axis and the 

 line  x  =  0.5  is shaded.
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Fig. 4

 This area is rotated through 2 π radians about the x-axis to form a paperweight. 

 (v) Using your answer to (iv), find the volume of material needed to create 
the paperweight. [6]
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11 The curves of two functions are shown in Fig. 5 below.

 g(x)  =  √3 x
1
2 h(x)  =  12  x2  +  x5

0 0.5 1 1.5

0.5

1

A

B

g (x)

h (x)

1.5

2

y

x

Fig. 5

 The graphs of the functions intersect at points A and B.

 Point A is at the origin and point B has an x-coordinate close to 1
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 (i) Use the Newton-Raphson method once, with x0 = 1, to find a better 
approximation for the x-coordinate of B.

  Give your answer correct to three decimal places.  [7]
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 (ii) Find the area enclosed between these two curves, using the approximation you  
have found in (i).

  Give your answer correct to three significant figures.  [7]
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