

Mark Scheme

Summer 2023

Pearson Edexcel GCE In A Level Further Mathematics (9FM0) Paper 3B Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023 Publications Code 9FM0_3B_2306_MS* All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- Where a candidate has made multiple responses <u>and indicates which response they wish</u> to submit, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Qu 1	Scheme	Marks	AO
(a)	$[E(X) =] -2 \times 0.25 + -1 \times a + 0 \times b + 1 \times a + 3 \times 0.3$	M1	1.1b
	= <u>0.4</u>	A1	1.1b
		(2)	0.1
(b)	$E(X^{2}) = (-2)^{2} \times 0.25 + (-1)^{2} \times a + 0 + 1^{2} \times a + 3^{2} \times 0.3 \ (= 2a + 3.7)$	M1	2.1
	[Var(X) =] 3.9 = 2a + 3.7 - "0.42"	dM1	1.1b
	a = 0.18	A1	1.1b
	[Use of sum of probs = 1 implies $2a + b = 0.45$] $b = 0.09$	A1ft	1.1b
(c)	$X_1 + X_2 > 3$ when $X_1 = 3, X_2 = 1$ $X_1 = 1, X_2 = 3$ $X_1 = 3, X_2 = 3$	(4) M1	3.4
		1011	5.4
	$[P(X_1 + X_2 > 3) =]$	M1	1.1b
	$"0.18" \times 0.3 + 0.3 \times "0.18" + 0.3 \times 0.3$ or $2 \times 0.3 \times (0.3 + "0.18") - 0.3^2$		
	= <u>0.198</u>	A1	1.1b
		(3)	
		(9 ma	rks)
	Notes		
(a)	M1 for a correct attempt (at least 3 correct non-zero terms or products and a	addition)	
	division by $k \ (k \neq 1)$ is M0		
	A1 for 0.4 o.e. (correct answer only scores 2 out of 2)		
(b)	1 st M1 for a correct attempt at $E(X^2)$ (at least 3 correct non-zero products	and additio	on)
	Missing brackets around -2 and -1 is M0 unless recovered		,
	$2^{nd} dM1$ (dep on $1^{st} M1$) for use of $3.9 = \text{their } E(X^2) - [E(X)]^2$ ft their	E(X) = 0.4	
	$1^{\text{st}} A1$ for $a = 0.18$ o.e.		
	2^{nd} A1 (dep on 1 st M1 only) for $b = 0.09$ o.e. or their $b = 0.45 - 2 \times a^{"}$ (p	rovided bo	th a
	and <i>b</i> are probabilities)		
(c)	1 st M1 for identifying at least 2 cases e.g. $X_1 = 3, X_2 \ge 1$ counts as 2 cases		
	(ignore extras including any incorrect pairs identified)		1
	implied by at least two correct products of probs. or correct ft prod 2^{nd} M1 for a correct numerical expression for the probability ft their "0		DS.
	A1 for 0.198 o.e.	.10	

Qu 2	Scheme	Marks	AO	
(a)	$H_0: \lambda = 1.7 \qquad H_1: \lambda \neq 1.7$	B1	2.5	
	[$X =$ no. of calls in 10 mins] $X \sim Po(17)$	M1	3.3	
	$[P(X \ge 25) = 1 - P(X \le 24)] = 0.0406463 \text{ or } CR: X \ge 27$	A1	3.4	
	[0.04> 0.025/ 25 is not in CR so not significant] insufficient evidence of a change in <u>rate</u> of <u>calls</u>	A1	2.2b	
		(4)		
(b)		M1	3.3	
	$[P(T > 2) =] P(T \ge 3) = 1 - P(T \le 2) = 1 - 0.947725$	M1	3.4	
	= awrt <u>0.0523</u>	A1	1.1b	
		(3)		
(c)	[$C =$ no. of calls out of 900 longer than 30 mins] [$C \sim B(900, p)$] $C \approx Po(900p)$	M1	3.3	
	$P(C=0) \approx e^{-900p} = 0.05$	M1	3.4	
	$900p = -\ln(0.05) [= 2.9957]$	M1	1.1b	
	p = 0.003328 awrt <u>0.00333</u>	A1	1.1b	
		(4)		
		(11 ma	arks)	
	Notes			
(a)	B1 for both hypotheses correct which must be attached to H_0 and H_1			
	must be in terms of λ or μ allow either 1.7 or 17			
	M1 for stating or using the correct Poisson model. may be implied by sight of awrt 0.0406/7 or awrt 0.959 or 0.9747	or better		
	may be implied by sight of awrt $0.0406/7$ or awrt 0.959 or 0.9747 or better 1 st A1 for correct prob of awrt 0.04			
	or for correct CR found $X \ge 27$ ($X > 26$) (ignore lower tail CR if found) allow CV $X = 27$			
	2^{nd} A1 (dep on M1A1) for a correct conclusion in context mentioning "rate of calls" o.e.			
	Allow e.g. 'The rate of calls is 1.7 per minute/17 per 10 minutes' Must be rate o.e. not "number"			
	A0 if inconsistent comments are seen e.g. "reject H_0 , no change in r	ate of calls	"	
(b)	1 st M1 for sight or use of the correct binomial model.	5		
	may be implied by sight of awrt: $0.0523 \text{ or } 0.948 \text{ or } 0.795 \text{ or } 0.2023 \text{ or } 0.948 \text{ or } 0.795 \text{ or } 0.2023 \text{ or } 0.948 \text{ or } 0.795 \text{ or } 0.2023 \text{ or } 0.948 \text{ or } 0.953 \text{ or } 0.948 \text{ or } 0.948$	15		
	A1 for awrt 0.0523 (correct answer only scores 3 out of 3)			
SC:	Use of Po(70 \times 0.012) leading to an answer of 0.0533(45) and scores M1N	A1A0		
(c)	1^{st} M1 for sight or use of Po(900 <i>p</i>) (as a suitable approx. to B(900, <i>p</i>))			
	(may be implied by correct answer awrt 0.00333)			
	2^{nd} M1 for a correct equation in p or correct use of P(C = 0) from Po e.g. e	$^{-\lambda} = 0.05$		
	3 rd M1 for a correct method to solve for <i>p</i> (allow $p = \pm \ln(0.05)/900$) or to solve for λ , i.e. $\lambda = \text{awrt } 3(.00)$			
	A1 for $p = awrt 0.00333$ Must see Po used condone $\frac{1}{300}$ o.e.			
~~~	Allow standard form (awrt $3.33 \times 10^{-3}$ ) or percentage (awrt $0.333\%$ )	)		
SC:	Use of Binomial gives 0.003323 awrt 0.00332 scores M0M0M0A1			

Qu 3	Scheme	Mark	AO
(a)	$[X \sim B(5, 0.5)] P(X = 0) = P(X = 5) = 0.03125$	M1	1.1b
	$\underbrace{\text{or } P(X=2) \text{ or } P(X=3) = 0.3125}_{\text{(multiply by 170 to cot]} = 5.21(25) + 3.552(25)}$		
	[multiply by 170 to get] $r = 5.31(25)$ ; $s = 53.1(25)$	A1;A1 (3)	1.1b(x2)
(b)	$H_0: B(5, 0.5)$ is a suitable model $H_1: B(5, 0.5)$ is NOT a	B1 (3)	2.5
		DI	2.5
	$\frac{(O_i - E_i)^2}{F} = \frac{\frac{(3 - 5.31)^2}{5.31'}}{\frac{(10 - 26.56)^2}{26.56}} = \frac{\frac{(45 - 53.1)^2}{'53.1'}}{\frac{(62 - 53.1)^2}{'53.1'}} = \frac{\frac{(38 - 26.56)^2}{26.56}}{\frac{(12 - '5.31)^2}{'5.31'}}$		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	1.1b
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\frac{(Q-F)^2}{Q} = \frac{Q^2}{Q^2}$		
	$\sum \frac{(O_i - E_i)^2}{E_i} \text{ or } \sum \frac{O_i^2}{E_i} - 170 = 27.4 \dots \text{ awrt } \underline{27.4} \text{ or awrt } \underline{27.5}$	A1	1.1b
	Degrees of freedom is $6 - 1 = 5$ , and critical value is <u>11.07(0)</u>	B1ft B1ft	$1.1h(x^{2})$
	[Significant result] <u>Marcus' model/B(5, 0.5)</u> is not a good fit. (o.e.)	A1	1.1b(x2) 2.2b
		(6)	2.20
(c)	$\hat{p} = \left[\frac{0 \times 3 + 1 \times 10 + \dots + 5 \times 12}{170 \times 5}\right] = 0.58588\dots \text{ awrt } \underline{0.586}$	B1	1.1b
	$p = \begin{bmatrix} -170 \times 5 \end{bmatrix}^{-0.56568}$ awit <u>0.565</u>	DI	1.10
		(1)	
(d)(i)	Need to pool (first 2) cells (0 and 1 since $E(0) < 5$ ) and use of $\hat{p}$	M1	2.4
(;;)	Degrees of freedom: 5 groups $-2$ constraints $=$ <u>3</u>	A1 B1ft	1.1b
(ii)	Critical value is 7.815	(3)	1.1b
(e)(i)	Nima's model is a good fit (since 1.62 < '7.815')/Marcus' is not		2.4
	and this suggests coin is biased/probability of head approx. 0.6	B1	2.4
(ii)	Nima's test suggests binomial is a good model <u>and</u> therefore	B1	2.2b
	independence of spins is a reasonable assumption	(2) (15	5 marks)
	Notes	(-) (-)	, <b>, , , , , , , , , , , , , , , , , , </b>
(a)	M1 for 1 correct probability which may be embedded (0.03125 or 0.3125 or 0.5	⁵ or 5C2 0.5 ²	× 0.5 ³ )
	1 st A1 for $r = awrt 5.31$ (condone $\frac{85}{16}$ )		
	$2^{nd} A1 \text{ for } s = awrt 53.1  (condone \frac{425}{8})$		
(b)	$1^{\text{st}}$ B1 for both hypotheses mentioning B(5, 0.5) or Marcus' distribution at lea		
	M1 for at least one correct (ft) term or expression of the test statistic (accept 2s 1 st A1 for awrt 27.4 or awrt 27.5 (correct value here scores M1A1)	51)	
	$2^{nd}$ B1 for 5 or ft if 'their r' < 5, then df (= 4 - 1) = 3		
	$3^{rd}$ B1 for 11.07(0) (or better) for ft df = 4 $\rightarrow$ 9.488 or df = 3 $\rightarrow$ 7.815		
	A1 dep on $1^{\text{st}}$ M1 for a suitable conclusion in context rejecting $\underline{B(5, 0.5)}/Ma$ Must be compatible with their test statistic and their CV. Just 'Bin is n		
	A0 if inconsistent comments are seen e.g. "do not reject $H_0$ , B(5, 0.5) is	-	
(c)	B1 for awrt 0.586 allow $\frac{498}{850}$ o.e.	8004 IN	
(d)(i)	M1 for both reasons, must mention pooling or show pooling or mention exp.	value $< 5$ and	1
	use of estimated parameter		-
	A1 for df = 3 (must have scored the M1 for this mark) B1 for $7.815$ (must have slowed by the first state M1 must be allowed by the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the first state of the M1 must be allowed by the M1 must be m1 must be allowed by the M1		
(ii)	B1 for 7.815 (or better) allow this independent of the M1 only allow ft on $d^{st}$ B1 for stating Nima's (binomial) model is a good fit/do not reject H ₀ for Nim		
(e)(i)	model is not a good fit and suggest that coin is probably biased/ $p > 0.5$ (p clo		
	Only comparing 1.62 with '27.4' to reach $p > 0.5$ is incorrect and scores B0		

Qu 4	Scheme	Mark	AO
	[X = no. of rolls to 4 sixes] X~NegBin(4, $\frac{1}{6}$ )	M1	3.3
	$\mu \left[ = \frac{r}{p} \right] = \underline{24} ,  \sigma^2 \left[ = \frac{r(1-p)}{p^2} \right] = \frac{4 \times \frac{5}{6}}{\frac{1}{36}} = \underline{120}$	A1, A1	1.1b(x2)
	$[\bar{X} \approx N] \left( "24", \sqrt{\frac{"120"}{32}}^2 \right)$	M1 M1	2.1,3.4
	$P(\bar{X} < 27.2) = 0.95078$ awrt <u>0.951</u>	A1	1.1b
		(6 m	arks)
	Notes		
	1 st M1 for selecting the correct negative binomial model. May be i	mplied by corr	ect mean
	or variance		
	NegBin on its own is M0		
	$1^{st} A1$ for mean = 24		
	$2^{nd}$ A1 for variance = 120 $\sigma$ = 120 is A0 unless recovered		
	2 nd M1 for writing or using of normal with mean 24 (may be impli	ed by correct a	nswer)
	ft their mean which may come from any distribution	•	,
	$3^{rd}$ M1 for writing or using normal with standard deviation = $\sqrt{\frac{120}{32}}$	$\left[=\sqrt{3.75}\right]$	
	ft $\frac{\text{their }\sigma}{\sqrt{32}}$ where $\sigma$ may come from any distribution		
	(may be implied by correct answer)		

(a) $H_0: \mu = 330$ $H_1: \mu < 330$ $[\bar{X} \sim] N \left( 330, \left( \frac{8}{\sqrt{25}} \right)^2 \right)$ M1 $P(\bar{X} < C) = 0.05 \Rightarrow \frac{C - 330}{\sqrt[8]{\sqrt{25}}} = -1.6449$ M1	2.5 3.3 3.4		
$P(\bar{X} < C) = 0.05 \implies \frac{C - 330}{\sqrt[8]{\sqrt{25}}} = -1.6449 \qquad M1$	3.4		
So $C = 327.368$ and critical region is: $\overline{X} < \text{awrt } \underline{327}$ A1	1.1b		
(4)			
<b>(b)</b> $\overline{Y} \sim N\left(330, \left(\frac{8}{\sqrt{55}}\right)^2\right)$ and require $2 \times P(\overline{Y} < 328)$ (o.e.) M1	3.3		
= 0.063732 awrt <u>0.0637</u> A1	1.1b		
(c) $P(\bar{X} > "327.368"   \mu = 325)  or  1 - P(\bar{X} < "327.368"   \mu = 325) $ [M1 = 0.0694233 awrt <u>0.0694</u> [A1]	3.4 1.1b		
(2) (8 m			
Notes			
$1^{st}$ M1 for stating or using the correct model – may be implied by use in later line. Condone X or any letter for $\overline{X}$ $2^{nd}$ M1 for a correct equation for C Allow any z value that satisfies $1.6 <  z  < 1.7$ If standardisation equation not seen, this mark may be implied by CV = aw CR: <awrt 327<="" td=""></awrt>	<ul> <li>1st M1 for stating or using the correct model – may be implied by use in later line. Condone X or any letter for X </li> <li>2nd M1 for a correct equation for C Allow any z value that satisfies 1.6 &lt;  z  &lt; 1.7 If standardisation equation not seen, this mark may be implied by CV = awrt 327 or CR: <awrt 327<="" li=""> </awrt></li></ul>		
A1 for a correct CR allow just "< awrt 327" Condone e.g. $X < 327$ rather than Condone $\leq$	X < 327		
(b) M1 for sight of correct model and attempt at $P(\overline{Y} < 328)$ (o.e.) Condone missing	ng 2×		
(c) A1 for awrt 0.0637 (correct answer scores 2 out of 2) M1 for a correct (ft) statement may be implied by sight of e.g. $Z > \frac{"327.36"-32}{\frac{8}{5}}$	M1 for a correct (ft) statement may be implied by sight of e.g. $Z > \frac{"327.36"-325}{} = 1.48$		
For $\mu = 325$ allow $\bar{X} \sim N(325,)$			
Allow ft from a 2-tailed test in part (a) A1 for awrt 0.0694 (correct answer scores 2 out of 2) $\overline{SC}$ [2] $\overline{SC}$ [2] $SC$			
SC Sight of $P(328 < \overline{X} < 332   \mu = 325)$ or $1 - P(\overline{X} < 328 \cup \overline{X} > 332   \mu = 325)$ score	es M1A0		

Qu6	Scheme	Marks	AO
(a)	NegBin(r, p) has pgf $\left[\frac{pt}{1-(1-p)t}\right]^r$ and identify the connection	M1	2.1
	<b>NegBin(2,</b> $\frac{1}{3}$ )	A1	2.2a
(b)	e.g. no. of rolls to achieve 5 or 6 (so that $p = \frac{1}{3}$ ) twice (oe)	(2) B1ft (1)	3.3
(c)(i)	$G'_{X}(t) = \frac{2t(3-2t)^{2} - (-2) \times 2(3-2t)t^{2}}{(3-2t)^{4}}  \underline{\text{or}}  \frac{6t}{(3-2t)^{3}}$	M1 A1	2.1 1.1b
	$\underline{\mathrm{E}}(\underline{X}) = \mathrm{G}'_{X}(1) = \mathbf{\underline{6}}$	A1	1.1b
(ii)	$G_X''(t) = \frac{6(3-2t)^3 - (-2) \times 3(3-2t)^2 \times 6t}{(3-2t)^6}  \underline{\text{or}}  \frac{18+24t}{(3-2t)^4}$	M1	2.1
	$G''_{X}(1) = 42$	A1	1.1b
	$Var(X) = "42" + "6" - "6"^2$	M1	1.1b
	= <u>12</u>	A1	1.1b
(d)	$G_{Y}(t) = t^{10} \times \frac{1}{9} \left[ 1 - \frac{2}{3} t^{3} \right]^{-2} = \frac{t^{10}}{9} \left[ 1 + \dots \frac{(-2)(-3)(-4)}{3!} \left( -\frac{2}{3} \right)^{3} t^{9} \dots \right]$	(7) M1 A1	2.1 1.1b
	$P(Y=19) = \frac{32}{243}$	A1	1.1b
ALT	Identify that $Y = 3X + 4$	(3) M1	
	(Y = 19 requires X = 5 so ) P(X = 5) = $\binom{4}{1} \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)$	A1	
		(13 ma	arks)
	Notes	· · ·	
(a)	M1 for identifying the NegBin distribution (allow NB for NegBin) A1 for $r = 2$ and $p = \frac{1}{3}$		
(b)	All for $r = 2$ and $p = \frac{1}{3}$ Blft for identifying a suitable definition for X using a (fair) die, with $p = \frac{1}{3}$ and the second occurrence of the event, only ft their NegBin distribution in (a). A finite number of rolls is B0		
(c)(i) (ii)	1 st M1 for attempt to differentiate quotient or product. At least one uv' style term correct. 1 st A1 for a fully correct first derivative (needn't be simplified) 2 nd A1 for $E(X) = 6$ NB this A1 depends on M1 only but M1A0A1 is possible 2 nd M1 for attempt to diff' quotient or product again. At least one uv' style term correct. 3 rd A1 for 42 (may be given for incorrect G" provided their G" (1) gives 42 and M1 scored)		
	Note all powers of $(3 - 2t)$ equal 1 when $t = 1$ is substituted so ca 3rd M1 for correct use of pgf to find Var(X) 4 th A1 dep on M3 for 12	in be used as	a check
(d)	M1 for writing pgf in suitable form to carry out binomial expansion $1^{\text{st}} \text{A1}$ for a correct expression for coefficient of $t^{19}$ $2^{\text{nd}} \text{A1}$ for $\frac{32}{243}$ or exact equivalent		

ALT	M1 for identifying connection $Y = 3X + 4$ 1 st A1 for a correct numerical probability expression for P(X=5)		
Qu7	Scheme	Marks	AO
(a)(i)	$X \sim \text{Geo}(0.2)$ or $P(X = 4) = 0.8^3 \times 0.2$	M1	3.3
	= <u>0.1024</u>	A1	1.1b
(**)		(2)	
(ii)	<i>T</i> ~NegBin(3,0.2) or $P(T=8) = \binom{7}{2} 0.2^2 \times 0.8^5 \times 0.2$	M1	3.3
	$= 0.05505 \text{ awrt } \underline{0.0551}$	A1 (2)	1.1b
(iii)	<i>F</i> ~B(10, 0.2) or $P(F = 4) = {10 \choose 4} 0.2^4 \times 0.8^6$	M1	3.3
	P(F=4) = 0.088080 awrt <u>0.0881</u>	A1	1.1b
(b)	$P(R) = P(X \le 4)$ and X~Geo(0.2) $P(X \ge 1)$ , X~B(4, 0.2)	(2) M1	3.1b
()	$P(R) = P(X \le 4) \text{ and } X \sim \text{Geo}(0.2) \qquad P(X \ge 1), X \sim B(4, 0.2) \\= 1 - P(X > 4) = 1 - 0.8^4 \qquad = 1 - P(Y = 0) = 1 - 0.8^4$	M1	3.4
	= 0.59(04)	A1	1.1b
	$P(Y) = P(N \le 7) \text{ and } N \sim \text{NegBin}(3, 0.4)$	M1	3.1b
	$0.4^3 + \binom{3}{2} 0.4^3 0.6^1 +$		
	$\begin{bmatrix} \binom{4}{2} 0.4^{3} 0.6^{2} + \binom{5}{2} 0.4^{3} 0.6^{3} \\ 1 - \binom{7}{2} 0.4^{2} 0.6^{5} + \binom{7}{1} 0.4^{1} 0.6^{6} + \binom{7}{0} 0.6^{7} \end{bmatrix}$	M1	3.4
	$+\binom{6}{2}0.4^{3}0.6^{4}$		
ALT	$P(Y) = P(W > 2)$ where $W \sim B(7, 0.4)$	M1	
	$= 1 - P(W \le 2) [= 1 - 0.419904]$	M1	1 11
	$= \frac{0.58(0096)}{R}$ (has the greater probability)	A1 A1	1.1b 3.2b
	K (has the greater probability)	(7)	5.20
		(13 m	arks)
	Notes	11	
(a)(i)	M1 for selecting the correct model. Stated or used which may be implied A1 for 0.1024 or $\frac{64}{625}$ (accept 0.102) (correct answer scores 2 out of 2)	a by ans.	
(ii)	M1 for selecting the correct model. Stated or used which may be implied	hy ans	
(11)	Allow $0.2 \times P(V=2)$ from $V \sim B(7, 0.2)$	j ulibi	
	A1 for awrt 0.0551 (correct answer scores 2 out of 2)		
(iii)	M1 for selecting the correct model. Stated or used may be implied by ans A1 for awrt 0.0881 (correct answer scores 2 out of 2)	s of 0.967(2	2)
(b)	$1^{\text{st}}$ M1 for a correct distribution and prob. expression for P( <i>R</i> ) (may be im $2^{\text{nd}}$ M1 for a correct numerical expression for P( <i>R</i> ) (allow any equivalent of		^d M1)
	$1^{\text{st}}$ A1 for awrt 0.590 or $\frac{369}{625}$ (accept 0.59 or better) awrt 0.590 implies M		
	$3^{rd}$ M1 for a correct distribution and prob. expression for P( <i>Y</i> ) (may be in		th M1)
	$4^{\text{th}}$ M1 for a correct numerical expression for P(Y) (allow any equivalent e	xpression)	)
	2 nd A1 for awrt 0.580 or (accept 0.58 or better) awrt 0.580 implies M	1M1A1	

Pearson Education Limited. Registered company number 872828

with its registered office at 80 Strand, London, WC2R ORL, United Kingdom