

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCE In Chemistry (9CH0)

Paper 02: Advanced Organic and Physical

Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or <a

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71913A
Publications Code 9CH0_02_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Additional Guidance	Mark
1(a)	skeletal formula	Example of skeletal formula	(1)
		Do not award displayed or structural formulae	

Question number	Answer	Mark
1(b)	The only correct answer is A (C _n H _{2n-2})	
	B is incorrect because C_nH_{2n} is the general formula of an alkene or a cycloalkane	
	C is incorrect because C_nH_{2n+1} is the general formula of an alkyl group	
	D is incorrect because C_nH_{2n+2} is the general formula of a straight chain or branched chain alkane	

Question Number	Answer	Additional Guidance	Mark
1(c)	An answer that makes reference to the following points: • you cannot control how many chlorine atoms will substitute or	Allow names or formulae	(2)
	you cannot control the carbon atom on which the chlorine will substitute or a mixture of / side / unwanted / products will form (1)		
	• need to separate the 1,2-dichlroethane from any other products made (1)	Allow a specific example of a correct unwanted product e.g chloroethane, 1,1,1-trichloroethane, 1,1-dichloroethane, 1-chlorobutane, butane Do not award H ₂	
		Ignore Low yield, waste products, damage to ozone, dangers of UV, chain reaction, HCl	

(Total for Question 1 = 4 marks)

Question number	Answer	Mark
2(a)	The only correct answer is B (a biofuel and renewable)	(1)
	 A is incorrect because ethanol is renewable using the fermentation process C is incorrect because ethanol is made from plants and is renewable using the fermentation process D is incorrect because ethanol is made from plants 	

Question Number	Answer	Additional Guidance	Mark
2(b)		Example of equation	(1)
	balanced equation	$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O$ or $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$	
		Allow fractions e.g. 3/2 O ₂ Allow CH ₄ O for methanol Ignore state symbols	

Question Number	Answer	Additional Guidance	Mark
2(c)	• (red) phosphorus and iodine / P or P ₄ and I ₂ or phosphorus(III) iodide / PI ₃	Allow name or formula but if both are given both must be correct. Allow potassium or sodium iodide / KI or NaI and phosphoric(V) acid / H ₃ PO ₄ Allow white phosphorus and iodine Allow hydrogen iodide / HI Allow red phosphorus and PI ₃ Ignore solvent Do not award phosphorus(V) iodide / PI ₅ Do not award KI and /or H ₂ SO ₄	(1)

Question number	Answer	Mark
2(d)(i)	The only correct answer is B $(1485 - 1365, 2962 - 2853 \text{ and } 3750 - 3200 \text{ cm}^{-1})$	(1)
	 A is incorrect because 3300 - 2500 cm⁻¹ is for an O-H in a carboxylic acid C is incorrect because 1669 - 1645 cm⁻¹ for C=C in an alkene D is incorrect because 1740 - 1720 cm⁻¹ is for C-O in an aldehyde and 3300 - 2500 cm⁻¹ is for an O-H in a carboxylic acid 	

Question Number	Answer	Additional Guidance	Mark
2(d)(ii)			(1)
	• 2 / two		

Question Number	Answer	Additional Guidance	Mark
2(e)		Example of half-equation	(1)
	half-equation	$CH_3CH_2OH + H_2O \rightarrow CH_3COOH + 4H^+ + 4e^-$	
		Allow multiples	
		Allow –4e ⁻ on left hand side of equation	
		Ignore missing charge on electron Ignore state symbols	

(Total for Question 2 = 6 marks)

Question number	Answer	Mark
3(a)	The only correct answer is D (urea, CO(NH ₂) ₂)	(1)
	 A is incorrect because ethanamide has M_r of 59.037 B is incorrect because ethanoic acid has M_r of 60.021 C is incorrect because trimethylamine has M_r of 59.0733 	

Question Number	Answer	Additional Guidance	Mark
3(b)		Example of calculation	(2)
	• calculation of mol of gas (1)	mol of gas = $\frac{5.40}{24.0}$ = 0.225 (mol)	
	• calculation of molar mass (1)	molar mass = $\frac{9.90}{0.225}$ = 44.0 / 44 (g mol ⁻¹)	
		TE on mol gas	
		Ignore SF except 1 SF Ignore units	
		Correct answer with no working scores (2)	

Question Number	Answer	Additional Guidance	Mark
3(c)	• conversion of pressure, temperature and volume (1)	Example of calculation pressure = $100.6 \times 10^3 = 1.006 \times 10^5$ Pa and temperature = $273 + 95.0 = 368$ K and volume = $60.0 \times 10^{-6} = 6.00 \times 10^{-5}$ m ³	(4)
	• rearrangement of ideal gas equation (1)	$n = \underline{pV}$ RT Allow values correctly substituted into $pV = nRT$	
	• calculation of n (1)	$n = \frac{1.006 \times 10^5 \times 6.00 \times 10^{-5}}{8.31 \times 368} = 1.9738 \times 10^{-3}$ TE on p, V and T	
	• calculation of molar mass and answer to 2 / 3 SF (1)	Molar mass = 0.170 1.9738×10^{-3} = $(86.129) = 86 / 86.1 (g mol^{-1})$ TE on n	
		Ignore units. If their final answer is less than 1 do not award the final mark	

(Total for Question 3 = 7 marks)

Question Number	Answer			Additional Guidance	e	Mark
4(a)	• calculation of mol of CO ₂	(1)		lation = 1.725 × 10 ⁻¹ / 0.1725 14	5 (mol)	(4)
	• calculation of masses of C and H	(1)	or	(g) subsumes M1 as we	ell	
	• calculation of mol and ratio of C : H	1)	mol ratio	C 2.07/12 = 0.1725 0.1725/0.1725 = 1	H 0.43 /1 = 0.43 0.43/0.1725 = 2.4928	
	• empirical formula	1)		ith no working scores ith some working scor		

Question number	Answer	
4(b)(i)	The only correct answer is A (accepts a pair of electrons)	(1)
	 B is incorrect because electrophiles involve a pair of electrons, not an unpaired electron C is incorrect because nucleophiles donate a pair of electrons D is incorrect because nucleophiles donate a pair of electrons, not an unpaired electron 	

Question Number	Answer		Additional Guidance	Mark
4(b)(ii)	 An explanation that makes reference to the following points: benzene (is resistant to bromination because it) has delocalisation of electrons / delocalised electrons (in π bonds) 	(1)		(4)
	benzene is (kinetically) stable or the activation energy for the reaction is high	(1)	Allow more energy is required to break up the structure of benzene Allow a (Friedel-Crafts) catalyst / halogen carrier /AlCl ₃ , FeBr ₃ is needed	
	• ethene (reacts readily because it) has localised electron density (in one π bond) / does not have delocalised electro or increased / high electron density (of the double / π bond compared to benzene)	ns (1)	Allow ethene has a C=C / (carbon – carbon) double bond	
	which makes it more susceptible to / easier to undergo electrophilic attack (than benzene)	(1)	Allow benzene is less susceptible to electrophilic attack (than ethene) Allow the π / double bond in ethene is weaker (than in benzene) Allow ethene is a better nucleophile (than benzene) Allow the Br ₂ / Br-Br is more easily polarised (by ethene) Do not award electrophilic attack by Br ⁺ If no other mark scored allow (1) for 'benzene undergoes substitution and ethene undergoes addition'	

Question Number	Answer	Additional Guidance	Mark
5(a)(i)	 An answer that makes reference to the following point: there is a change / decrease in the number of (gas) molecules / moles (so there will be a change in the total gas pressure) 	If numbers are given, they must be correct (3 to 2) Ignore there is a change in the total volume of gas Ignore references to partial pressure	(1)

Question Number	Answer	Additional Guidance	Mark
5(a)(ii)	An answer that includes: • temperature and volume	Do not award 'pressure'. Do not award 'heat' for temperature. Allow 'volume of container' Do not award 'volume of reactants'. Ignore catalyst Do not award if more than two factors given	(1)

Question number	Answer	Mark
5(b)(i)	The only correct answer is D (line S)	(1)
	 A is incorrect because [NO(g)] is decreasing during the reaction B is incorrect because [NO(g)] is decreasing during the reaction C is incorrect because [NO(g)] is decreasing during the reaction 	

Question number	Answer	Mark
5(b)(ii)	The only correct answer is B (line Q)	(1)
	A is incorrect because rate is directly proportional to $[O_2(g)]$ C is incorrect because rate is directly proportional to $[O_2(g)]$	
	$m{D}$ is incorrect because rate is directly proportional to $[O_2(g)]$	

Question number	Answer	Mark
5(c)	The only correct answer is C (2z)	(1)
	A is incorrect because this is the rate if only the concentration of oxygen is halved	
	B is incorrect because this is the rate if the concentration of nitrogen monoxide is doubled, the concentration of oxygen is halved and the reaction is first order with respect to nitrogen monoxide	
	D is incorrect because this is the rate if only the concentration of nitrogen monoxide is doubled	

Question Number	Answer	Additional Guidance	Mark
5(d)(i)		Example of reaction profile enthalpy $ 2NO(g) + 2CO(g) $ $ \Delta H $ $ N_2(g) + 2CO_2(g) $ progress of reaction	(3)
	• products line to the right and lower than reactants line and labelled (1)	Allow (unbalanced) formula of product or just 'product' Ignore missing state symbols	
	• single - headed arrow downwards and labelled (1)	Allow other labels, e.g. enthalpy change / energy change Do not award $-\Delta H$ but ΔH negative is awarded Do not award double-headed arrow Arrow should be close to the reactant line and finish close to the product line Ignore activation energy arrows	
	• two curves to show enthalpy with a catalyst (1)	Both curves must be above the reactants line Ignore missing line and / or label for intermediate	

Question Number	Answer	Additional Guidance	Mark
5(d)(ii)	An explanation that makes reference to the following points:		(2)
	 a lower temperature can be used / no need for high(er) temperature (as the forward reaction is exothermic) there will be a higher equilibrium yield at lower temperature (1) this reduces the cost of the energy / fuel needed (1) 	Ignore reference to decreased pressure Ignore environmental issues (e.g. greenhouse gases) Ignore less heat. Ignore just 'to reduce cost'	
	• this reduces the cost of the energy / ruer needed (1)	If no other mark is awarded, allow (1) for 'even though they are expensive, they are not used up so last a long time' / 'catalysts reduce the activation energy and speed up the reaction'	

(Total for Question 5 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
6(a)(i)	An answer that makes reference to the following point:		(1)
	• use (a much) higher concentration (of propanone and acid (1) (than iodine)	Allow use a high concentration (of propanone and acid) Allow use a (large) excess (of propanone and acid) Ignore use a higher volume of propanone and acid	

Question Number	Answer		Additional Guidance	Mark
6(a)(ii)	An explanation that makes reference to the following point:			(2)
	• to neutralise the acid / H ⁺	(1)	Allow to remove / react with the acid / catalyst	
	• so that the reactions is quenched / stopped	(1)	Allow to freeze the reaction Ignore 'slow down'	

Question Number	Answer	Additional Guidance	Mark
6(b)(i)	 An answer that makes reference to the following point: ([I₂] / concentration (of iodine) is (directly) proportional to the volume of (sodium) thiosulfate / Na₂S₂O₃ / S₂O₃²⁻ 	Allow reverse argument Allow they react in a specific ratio / quoted ratio / 2:1 Do not award equal to or inversely proportional to Do not award I ⁻ / iodide (ions)	(1)

Question Number	Answer	Additional Guidance	Mark
6(b)(ii)	 axes with time on x axis and labelled, including units and suitable scale so that points cover at least half the axes in both directions (1) points plotted correctly to (±½ square) and straight line through points (1) 	Allow x axis to start at 5 Allow M2 if axes wrong way around in M1	(2)

Question Number	Answer	Additional Guidance	Mark
6(b)(iii)	(zero order) because graph is a straight line / linear or rate is constant	Allow the gradient is constant Do not award if their graph is a straight horizontal line Ignore through the origin This mark is dependent on the graph being a straight line with a constant gradient	(1)

Question Number	Answer		Additional Guidance	Mark
6(c)(i)	 an equation that has only H⁺ and CH₃COCH₃ on the left correct product 	(1)	$\begin{array}{c} \underline{\text{Example of equation}} \\ \underline{\text{CH}_3\text{COCH}_3} + \text{H}^+ \rightarrow \text{CH}_3\text{C}(\text{O}^+\text{H})\text{CH}_3 \\ \textbf{or} \\ \underline{\text{CH}_3\text{COCH}_3} + \text{H}^+ \rightarrow \text{CH}_3\text{C}^+(\text{OH})\text{CH}_3 \\ \\ \\ \underline{\text{Allow structural}} / \text{skeletal formulae e.g. product shown as} \\ \underline{\text{CH}_3\text{-C}} \\ \underline{\text{CH}_3\text{-C}} \\ \underline{\text{CH}_3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(2)

Question number	Answer	Mark
6(c)(ii)	The only correct answer is A (2.24×10^{-5})	(1)
	<i>B</i> is incorrect because 3.36×10^{-5} would be the rate if the reaction was zero order with respect to CH_3COCH_3 and first order with respect to H^+ and I_2	
	<i>C</i> is incorrect because 4.48×10^{-5} would be the rate if the reaction was first order with respect to CH ₃ COCH ₃ , H ⁺ and I ₂	
	<i>D</i> is incorrect because 8.96×10^{-5} would be the rate if the reaction was first order with respect to CH_3COCH_3 and I_2 and zero order with respect to H^+	

Question Number	Answer		Additional Guidance	Mark
6(c)(iii)	An explanation that makes reference to the following points:			(2)
	• rate will be the same	(1)	Do not allow the rate would be constant.	
	• because rate equation only involves propanone and acid rate equation does not involve iodine / bromine	/ (1)	Allow the order with respect to bromine would be 0 / bromine would not be in the rate determining step M2 depends on correct M1	

(Total for Question 6 = 12 marks)

Question Number	Answer	Additional Guidance	Mark
7(a)	An explanation that makes reference to the following points:	Example of diagram	(4)
	• ethanal and ethanoic acid (are both soluble because they) can form hydrogen bonds (with water) (1)	Allow H-bond for hydrogen bond	
	• diagram to show hydrogen bonding between ethanal and water (1)	H ₃ C — C H	
		OH-O bond angle should be about 180° Allow skeletal formulae Ignore dipoles and lone pair	
		Do not award hydrogen bond from H of CHO to O of H_2O	
	• ethanal (has a lower boiling temperature because it only) has (weak) London forces and dipole-dipole forces between molecules (1)	Allow van der Waals' / dispersion forces / attractions between temporary dipole and induced dipoles for London forces	
	(ethanoic acid has a higher boiling temperature) because it forms intermolecular hydrogen bonds / hydrogen bonds between molecules and more energy is needed to overcome these / hydrogen bonds are the strongest intermolecular force / stronger than London Forces and dipole - dipole (1)		

Question Number	Answer	Additional Guidance	Mark
7(b)(i)	• curly arrow from lone pair on C of CN ⁻ to C of C=O (1)	Allow correct skeletal formulae throughout. Allow CN ⁻ to attack C=O from any angle Allow CN bond displayed Ignore arrows showing the formation of CN ⁻ from HCN, attack must be by CN ⁻	(4)
	dipole on C=O and curly arrow from double bond to, or just beyond, O (1)	Negative charge on O must be present.	
	• structure of intermediate (1)	Allow if lone pair (s) on O missing. Do not award δ – on O.	
	curly arrow from lone pair on O to H of HCN and curly arrow from H–CN bond to anywhere on CN or curly arrow from lone pair on O ⁻ to H ⁺ (1)	This mark can be awarded if no / incorrect charge on O (as already penalised above)	

Example of mechanism:

$$C_2H_5$$
 C_2H_5
 C

Question Number	Answer	Additional Guidance	Mark
7(b)(ii)	An explanation that makes reference to the following points:		(3)
	a racemic mixture will form because		
	• the compound is planar around C=O / carbonyl group / $C\delta^+$ (1)	Do not allow just the molecule / propanal / intermediate is planar for M1	
	and the CN ⁻ ion / nucleophile can attack either side / above and below (the plane) (1)	Allow CN without the negative charge as this has been assessed in 7bi	
	• so equal amounts / chance of the two isomers / enantiomers (1)		
		Award one mark only for a statement that a racemic mixture will not form (because) a single enantiomer will form	

Question Number	Answer		Additional Guidance	Mark
7(c)(i)	An answer that makes reference to the following points: • filter (under suction) • recrystallise • suitable method of drying	(1) (1) (1)	Allow answers on the diagram Ignore filter while hot Comment Allow gravity filtration Allow description of recrystallisation to include dissolving in hot solvent and filtering (whether hot or cold) Allow to dry in a (warm) oven, on a radiator, sunny windowsill, dry between filter / tissue paper / desiccator Do not award use of a drying agent except with desiccator Do not award dry to constant mass Do not award dehydration No TE on points made against the incorrect step	(3)

Question Number	Answer	Additional Guidance	Mark
7(c)(ii)	An answer that makes reference to the following points: • X is cyclohexanone (1)		(2)
	• 156-8°C is just below / close to / within range of the melting temperature range of cyclohexanone and the IR absorption of 1717 is in the range (1720 – 1700 cm ⁻¹) for (alkyl) ketones (1)	Allow 156-8°C / the melting point of the compound is close to the range of both cyclohexanone and propanal If the range of IR absorption is quoted it must be correct	

Question Number	Answer	Additional Guidance	Mark
_	• benzene protons and nitrogen proton identified (1) • carbon protons identified (Example of labelling NO2 NH2 O2 NH2 CH3 H Allow any clear way of labelling the proton environments e.g. numbers 1 to 6 or letters A to F Do not award M1 if the nitrogen is circled as well at the	(2)
		hydrogen.	

(Total for Question 7 = 18 marks)

Question number	Answer	Mark
8(a)	The only correct answer is B (3)	(1)
	<i>A</i> is incorrect because pentane, 2-methylbutane and 2,2-dimethylpropane are the isomers of C_5H_{12} <i>C</i> is incorrect because pentane, 2-methylbutane and 2,2-dimethylpropane are the isomers of C_5H_{12}	
	D is incorrect because pentane, 2-methylbutane and 2,2-dimethylpropane are the isomers of C_5H_{12}	

Question Number	Answer	Additional Guidance	Mark
8(b)	An answer that makes reference to the following points:	Allow skeletal formulae throughout.	(3)
	• curly arrow from C=C towards top Br		
	• dipole on Br ₂		
	• curly arrow from Br-Br bond to, or just beyond, lower Br	Allow + on carbon 1 and Br on carbon 2	
	• intermediate		
	• lone pair on Br ⁻	Do not award $Br^{\delta-}$	
	• curly arrow from lone pair towards C ⁺		
		6 points awarded 3 marks	
		4 or 5 awarded 2 marks 2 or 3 awarded 1 mark	
		1 or 0 awarded 0 marks	
Example of m	nechanism]	

Example of mechanism

Question Number	Answer	Additional Guidance	Mark
8(c)(i)	An explanation that makes reference to the following points:	Allow these points shown on a labelled mechanism	(2)
	because sodium chloride (only) contains Cl ⁻ ions and the initial attack is by an electrophile (1)	Allow (the first step involves an electrophile but) Cl^- is a nucleophile / not an electrophile / there is no Cl^+ / Cl^{δ^+}	
	 Br^{δ+} / bromine must attack first (so no dichloro-product can form) (1) 	Allow Cl ⁻ only reacts when a carbocation has been formed Do not award Br ⁻ Do not award Br ⁺ must attack first.	

Question Number	Answer	Additional Guidance	Mark
8(c)(ii)	An explanation that makes reference to the following points:	Allow answers referring to the mechanism	(2)
	• because a secondary carbocation (intermediate) is formed (1)	Allow a correct diagram or description of the secondary carbocation	
	• more stable than a primary (carbocation intermediate) (1)	Allow a correct diagram or description of the primary and/or the secondary carbocation with a comment about it being less stable / secondary being more stable for 2 marks	

Question Number		Acceptable Ar	iswers	Additional Guidance	Mark
8(d)*	structured answer with Marks are awarded for and shows lines of re-	th linkages and fully-su or indicative content an asoning.	show a coherent and logically astained reasoning. Indeed for how the answer is structured thould be awarded for indicative	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	(6)
	Number of indicative marking points seen in answer 6 5-4 3-2 1 0 The following table s lines of reasoning.	Number of marks awarded for indicative marking points 4 3 2 1 0 hows how the marks signature of marks signature.	hould be awarded for structure and	If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

	Number of marks awarded for structure of answer and sustained line of reasoning
Answer shows a coherent and logical structure with linkages and fully	2
sustained lines of reasoning demonstrated throughout.	
Answer is partially structured with some	1
linkages and lines of reasoning.	
Answer has no linkages between points and is unstructured.	0

Comment:

Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning

In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.

General points to note

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).
e.g.

Indicative content

• IP1 – C=C

restricted rotation around C=C / double bond / pi bond

IP2 – Attached atoms

the higher the atomic number of the attached atom, the higher the priority of the group

and

in the E isomer the highest priority atom on each carbon are on opposite sides of the double bond /

in the Z isomer the highest priority atom on each carbon atom are on the same side of the double bond

• IP3 – Example of E/Z

Example of E isomer and Z isomer as labelled diagram

• IP4 – Optical isomerism

a non-superimposable mirror image / cannot be superimposed / contain a chiral centre / do not have a plane of symmetry

• IP5 – Example of optical isomers

Two 3-dimensional structures that are mirror images

• IP6 – Property

(optical isomers) rotate the plane of (plane-) polarised light (by equal amounts) in opposite directions

Ignore cis-trans

Allow 'no rotation about C=C'

Allow atomic mass / mass of group / heaviest

E isomer Z isomer

Ignore chemical names even if incorrect Allow diagrams without labels but clearly identified in their explanation

Allow have four different atoms or groups attached to a carbon atom

Do not award images that are not in 3D

(Total for Question 8 = 14 marks)

Question Number	Answer		Additional Guidance	Mark
9(a)	An answer that makes reference to the following points		Allow displayed formulae, any combination of structural and displayed formulae or skeletal formulae Ignore names even if incorrect	(5)
	• structure of A as 2-chloropropane (1)	CH ₃ CHClCH ₃	
	• structure of B as propan-2-ol	(1)	CH ₃ CH(OH)CH ₃ Allow structure of propan-1-ol if A is 1-chloropropane	
	• structure of C as propanone	(1)	CH ₃ COCH ₃ Allow structure of propanal if A is 1-chloropropane Do not allow propanoic acid as the formula is incorrect.	
	• structure of D as 2-propylmagnesium chloride (1)	CH ₃ CH(MgCl)CH ₃ Allow CH ₃ CH(ClMg)CH ₃	
	• structure of E as 2-methylpropanoic acid	(1)	CH ₃ CH(CH ₃)COOH TE throughout	

Question Number	Answer		Additional Guidance	Mark
9(b)	calculation of mol of NaOH	(1)	Example of calculation mol of NaOH = $\underline{15.5 \times 0.100}$ = $1.55 \times 10^{-3} / 0.00155$ (mol) 1000	(5)
	• calculation of mol HCl in 100 cm ³	(1)	mol HCl = $4 \times 1.55 \times 10^{-3} = 6.2 \times 10^{-3} / 0.0062$ (mol)	
	calculation of mol HCl at start	(1)	mol HCl at start = $\frac{100 \times 0.225}{1000}$ = 2.25 × 10 ⁻² / 0.0225 (mol)	
	• calculation of mol NH ₃ reacted with HCl	(1)	$mol\ NH_3 = 0.0225 - 0.0062 = 0.0163\ /\ 1.63\times 10^{-2}\ (mol)$	
	• calculation of percentage of N in compound	(1)	mass N = $0.0163 \times 14 = 0.2282$ (g) and % N = $0.2282 \times 100 = 19.176$ (%) 1.19	
			Allow TE at each stage but M5 must be <100% Correct answer scores 5 Ignore SF except 1 SF	

(Total for Question 9 = 10 marks)

