

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Physics (1PH0) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1PH0_2H_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word		
Strand	Element	Describe	Explain	
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description		
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning	
AO3	За	An answer that combines the marking points to provide a logical description of the plan/method/experiment		
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning	

Question number	Answer	Additional guidance	Mark
1(a)(i)	C lost electrons		(1) AO1
	A is incorrect because it would give the base a negative charge B and D are incorrect because protons do not move in this situation.		

Question number	Answer	Additional guidance	Mark
1 (a) (ii)	any two from		(2) AO1
	electrons have been transferred / moved (1)	cloth has gained electrons	
		accept negative charge for electrons	
		do not credit positive electrons / protons	
	by friction (1)		

Question number	Answer	Additional guidance	Mark
1 (b)	An explanation linking two from	accept <u>negative</u> <u>charge</u> for electrons	(2) AO1
	electrons transferred (from the cloth) to the metal (1)	accept star for metal	
	metal is a conductor (1)	electrons move through metal	
	electrons travel through person / to earth (1)	(metal is) earthed / grounded	

Question number	Answer	Additional guidance	Mark
1 (c)	at least one negative charge on left hand side of dust particle (1) at least one positive charge to the right of the negative charge(s) (1)	ignore charges drawn on base	(2) AO1
	net negative charge on left hand side / near to base (1) net positive charge to the right of the negative charge / further from base than negative charge (1)		

Total 7 marks

Question number	Answer	Additional guidance	Mark
2 (a)	voltmeter connected in parallel with the iron wire / any part of the iron wire (1) ammeter connected in series with the iron wire (1)	accept any recognisable symbols.	(2) AO1
	example: connector iron wire connector variable resistor battery	accept symbol drawn over connecting wire do not credit the same type of meter shown in contradictory positions	

Question number	Answer	Additional guidance	Mark
2 (b) (i)	one from (1) metre rule / metre stick / ruler / (measuring) tape / crocodile clip / other clip / wire cutters / pliers / sliding contact jockey / more (iron) wire	accept scissors	(1) AO1
		ignore additional electrical devices such as ohmmeter / multimeter	

Question number	Answer	Additional guidance	Mark
2 (b) (ii)	(ii) Figure 4 shows a graph of the results. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1) AO2
		accept any straight line within the shaded range judge by eye. ignore extrapolation for this marking point	

Question number	Answer	Additional guidance	Mark
2 (b)(iii)	any number between 2.7 and 3.3 inclusive	allow ecf from (ii) $\pm 0.1\Omega$	(1) AO2

Question number	Answer	Additional guidance	Mark
2 (b) (iv)	explanation linking any two from:	accept flow of electrons / charge for current in this context	(2) AO2
	(variable) resistor increases the resistance (of the circuit) (1)		
	(therefore) keeps the current constant / small(er) (1)	reduces current / limits the current	
		ignore slows the current / charge	
	because current increases temperature of the (iron) wire (1)	accept current heats up (iron) wire	
		accept for two marks: adjust variable resistor to keep current constant / small	

Question number	Answer	Additional guidance	Mark
2 (c)	substitution (1)	alternative method rearrangement (1)	(2) AO2
	1.56 = 0.45 x R	$(R =) \frac{V}{I}$	
		or	
		(R=) <u>1.56</u> 0.45	
	rearrangment and evaluation (1)	(substitution and) evaluation (1)	
	(R =) 3.5 (ohms)	(R =) 3.5 (ohms)	
		allow values that round to 3.5 e.g. 3.46(666) 3.47 etc award full marks for	
		the correct answer without working	

Total 9 marks (H paper)

Question number	Answer	Mark
3 (a)	□ D sublimating	(1) AO1
	A is incorrect because it describes a change of state from gas to liquid. B is incorrect because it describes a change of state from liquid to solid C is incorrect because it describes a change of state from solid to liquid	

Question number	Answer	Additional guidance	Mark
3 (b)	substitution (1) $(r) = \frac{7.22(\times 10^{-2})}{2.69(\times 10^{-5})}$	2.68 to any power of ten seen	(3) AO2
	evaluation (1)		
	(ρ =) 2680	allow any value that rounds to 2680; e.g. 2684	
		accept 2700	
		allow values in standard form e.g. 2.68×10^3	
	unit (1) kg / m ³	kg m ⁻³	
		allow for three marks: 2.68 to any power of ten with a consistent unit, e.g. 2680 kg/m³ 2680 g/dm³ 2.68 g/cm³ 2.68 kg/dm³ 0.00268 kg/cm³ 2 680 000 g/m³	
		allow for two marks: • 2680 with no or incorrect unit • 2.68 to any other power of 10 with an inconsistent unit of density • correct substitution with an inconsistent unit of density	
		 allow for one mark: 2680 to any other power of ten with no or incorrect unit appropriate unit of density with no or an incorrect value 	

Question number	Answer	Additional guidance	Mark
3 (c) (i)	933 (1)	do not accept -933	(1) AO2
		ignore K	
		ignore degrees	
		ignore °	

Question number	Answer	Additional guidance	Mark
3 (c)(ii)	A description to include any two from:		(2) AO1
	(motion is) random (1)	move freely / move in any direction / move around	
	various {speeds / velocities / kinetic energies} (1)	different speeds range of speeds	
	bump into each other / collide (1)	slide over / past each other / touch each other / in contact with each other	
	fast(er than solid) (1)	more kinetic energy (than in solid) ignore bulk properties of liquids e.g. take shape of container. ignore vibrate	
		"random speeds" on its own scores 1 mark	

H paper only:

Question number	Answer	Additional guidance	Mark
3 (d)	Any two from the following in any order	Answers need not be exactly the same as those given here provided that the meaning is clear.	(2) AO1
	(I took a) reading of the water level in the measuring	accept measured / read for take a reading	
	cylinder without the metal. (1)	accept reading of original level / volume	
		accept starting with a specified amount e.g. 50ml	
	(I made sure that) the metal was fully immersed / submerged (1)	all the metal was under water	
	(I) subtracted the two readings / volumes (1)	took one from the other / found the difference	
		ignore: repeat and/or average	
		other measurements such as mass	
		other methods such as Eureka can	
		ideas of spillage	
		reading from bottom of meniscus	

Question 4 H paper (question 10 F paper)

Question number	Answer	Additional guidance	Mark
4 (a) (i)	(80 000 – 23 000)		(1) AO2
	57 000 (Pa) (1)	-57 000 (Pa)	

Question number	Answer	Additional guidance	Mark
4 (a) (ii)	substitution (1)	alternative method re-arrangement (1)	(2) AO2
	80 000 = <u>F</u> 0.094	(F =) P x A or (F=) 80 000 x 0.094	
	rearrangement and evaluation (1)	(substitution and) evaluation	
	(F=) 7500 (N)	accept 7520 (N),	
		award full marks for correct answer without working.	
		allow 1 mark max for substitution using pressure of 57 000 or an answer that rounds to 5400 e.g. 5358 (calculated net force)	

Question number	Answer	Additional guidance	Mark
4 (a) (iii)	force is less (on small window) (1) pressure is the same (1)	force is greater on large window	(2) AO1

Question number	Answer	Additional guidance	Mark
4 (a) (iv)	arrow pointing towards outside of aeroplane (1)	may be inside or outside of aeroplane. need not touch X do not award if two or more conflicting arrows drawn	(2) AO1
	arrow is normal to surface at X (judge by eye) (1)	must touch X or dot at X	
	Examples:	independent marks	
	window MP2 only		
	window MP1 only		

Question number	Answer	Additional guidance	Mark
4 (b) (i)	increase in height results in decrease in pressure (1)	pressure decreases with height accept inversely proportional in this context accept negative correlation	(3) AO3
	non-linear relationship (1)	double the height does not result in half the pressure pressure not does change evenly description of graph e.g. curved / not straight	
	use of numerical data (1) at least two different pressure and height values from the graph	calculation of change in pressure e.g. 5000m to 10000 m pressure went down by 22	

Question number	Answer	Additional guidance	Mark
4 (b) (ii)	any one from	accept oxygen / atmosphere for air	(1) AO1
	air becomes less dense (1)	air gets thinner / (air) particles further apart / fewer particles / less particles	
	smaller weight (of air) above (1)	less air above / smaller height of air above	
	lower temperature (1)		
		ignore change in value of g with height	

Total 11 marks

Question number	Answer	Additional guidance	Mark
5 (a)	at least four lines as shown (1)	lines must not intersect (cross over) ignore	(2) AO1
		continuation of lines to S of a magnet	
	at least two arrows directed away from N poles (1)	independent mark	
		do not award if one or more arrows shown pointing towards N pole	
	N N	N	

Question number	Answer	Additional guidance	Mark
5 (b)	any three from	marks can be awarded from a correctly labelled diagram	(3) AO1
	magnetic fields interact (1)	magnets are in each other's magnetic field	
	(force due to) repulsion (between magnets) (1)	repel / push away	
	(repulsion) force upwards (on upper magnet) (1)		
	weight / gravitational force (downwards on upper magnet) (1)	accept gravity (acts downwards)	
	forces equal size / in equilibrium (1)	forces are balanced	
		ignore references to charge	

Question number	Answer	Additional guidance	Mark
5 (c) (i)		independent marks	(2) AO1
	1 up(wards) (1)	accept out(wards from the magnet)	
	2 down(wards) (1)	accept in(wards) / into (magnet)	
		allow 1 mark for 1 down / in(wards) AND 2 up / out(wards)	

Question number	Answer	Additional guidance	Mark
5 (c) (ii)		alternative method	(2) AO2
	substitution (1)	re-arrangement (1)	AOZ
	$0.15 = 0.5(0) \times 2.7 \times L(ength)$	$(length =) \frac{F}{B \times I}$	
		Or	
		(length =) $\frac{0.15}{0.5(0) \times 2.7}$	
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(length =) 0.11 (m)	(length =) 0.11 (m)	
		allow any values that round to 0.11 e.g 0.111	
		accept 0.1 or 0.1 (m)	
		allow 1 mark for answer of 9 (with or without working)	
		award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
6 (a)	B arms provide an upward force and feet act as a pivot A and C are incorrect because the rotation is not around the hands. D is incorrect because the legs are not providing an upward force that causes rotation		(1) AO3

Question number	Answer	Additional guidance	Mark
6 (b) (i)	calculation of both moments (1)	4 x 92 and 16 x 23 seen	(2) AO1, AO2
	moments are equal (size) and opposite direction (1)	comparison of both moments	
		368 (=) 368 or 4 x 92 = 16 x 23 or	
		$16 = \frac{4 \times 92}{23}$ or $4 = \frac{16 \times 23}{92}$	
		accept calculations in Nm	

Question number	Answer	Additional guidance	Mark
6 (b) (ii)	calculation of moment of ball (1)		(3) AO2
	480 (Ncm)	15 x 32 seen	
	calculation of total clockwise moment (1)		
	848 (Ncm)	368 + 480 seen	
	calculation of bicep force needed (1)		
	212 (N)	848/4 seen	
	OR		
	calculation of moment of ball (1)		
	480 (Ncm)	15 x 32 seen	
	calculation of additional force from bicep (1)		
	120 (N)	480/4 seen	
	calculation of total bicep force (1)		
	212 (N)	120 + 92 seen	
		award full marks for correct answer without working.	
		accept conversion of cm to m throughout	

Question number	Answer	Additional guidance	Mark
6 (c) (i)	(upthrusts in each case) are equal (1)		(1) AO3

Question number	Answer	Additional guidance	Mark
6 (c) (ii)	an explanation linking any three of	accept reverse arguments	(3) AO1
		accept saltwater for seawater	
	weight of ball = weight of water displaced (1)	upthrust = weight of water displaced	
	seawater more dense than fresh water (1)		
	smaller volume of seawater (needs to be) displaced (1)	accept less seawater displaced	
	to produce same weight of water (displaced) (1)	to produce same upthrust	

Total 10 marks

Question number	Answer	Additional guidance	Mark
7 (a) (i)	selection and substitution (1) (F=) 260 x 6.2 (x 10 ⁻³) evaluation (1) (F=) 1.612 (N) or 1.61 (N)	award 1 mark only for answer of 1.61(2) to any other power of ten, e.g. 1612 (N)	(3) AO2
	answer to 2 s.f. (1) 1.6 (N)	independent mark for any answer given to 2 significant figures allow 2 marks for answer of 1600 (N) with or without working 1.60 scores 2 marks award full marks for correct answer without	

Question number	Answer	Additional guidance	Mark
7 (a) (ii)	a description including	May be seen drawn in figure 17	(3) AO1
	read position of top of spring against the ruler (1)	measure length at the start	
		allow value from ruler e.g. 2.9 (cm)	
	read position of top of spring when pressed down (1)	measure the length when pressed down	
		allow value from ruler e.g. 2.0 (cm)	
	subtract the two readings (1)	subtract the two measurements	
		allow find the difference for subtract	
		allow calculated value from diagram e.g. 0.9 (cm)	
		ignore repeat	
	OR		
	substitution (1)		
	$0.39 = 260 \times \text{change in length}$		
	rearrangement (1) (change in length =) 0.39 260		
	evaluation (1) 1.5 mm unit must be shown	(0).0015m unit must be shown	

Question number	Answer	Additional guidance	Mark
7 (a) (iii)	description to include	may be seen drawn in Figure 17	(2) AO3
	change to enable accurate location of top of spring (1)		
	for example: pointer, set square, thin sheet / another ruler (under finger)	move ruler closer to spring	
		compress spring with weight rather than finger	
		ignore photographs	
	description of how the change is used (1)	make measurements from where pointer / set square / thin sheet / other ruler touches the ruler	
		reduce parallax error	
		prevents fluctuations while measuring	
		ignore repeats	
		ignore unqualified references to accuracy or precision	

Question number	Answer	Additional guidance	Mark
7 (b)	D 6 N up A and C are incorrect because the force is upwards B is incorrect because the force is the sum of the two weights given.		(1) AO3

Question number	Answer	Additional guidance	Mark
7 (c)	arrow (any length) (labelled R) in correct direction (judge by eye) (1)	independent marks Q = 40N R = 50N	(2) AO1
	(size of R =) 50N (1)	construction lines need not be shown arrow head must be present for MP1 accept answers in range 48N to 52N obtained from scale drawing working need not be shown	

Total 11 marks

Question number	Answer	Additional guidance	Mark
8 (a) (i)	selection and substitution (1) (KE =) $\frac{1}{2}$ x 1200 x 16(.0) ²	(KE =) ½ x 1200 x 16(.0) ² x 10 ⁻³	(2) AO2
	evaluation in kJ (1) (KE =) 150 (kJ)	accept any value that rounds to 150 e.g. 153.6 award full marks for correct answer without working. award 1 mark for 153.6 or 150 to any other power of ten	

Question number	Answer	Additional guidance	Mark
8 (a) (ii)		alternative method	(2) AO2
	selection and substitution (1)	selection and rearrangement (1)	AUZ
	17.5 (x 10 ³) = $\frac{126 (x10^6)}{t}$	(t =) <u>E(nergy)</u> P(ower) or	
		$ (t=) \frac{126 (x10^6)}{17.5 (x 10^3)} $	
	re-arrangement and evaluation (1)	(substitution and) evaluation (1)	
	(t=) 2(.0) (h)	(t=) 2(.0) (h)	
		award full marks for correct answer without working.	
		allow 1 mark for 7(.2) to any power of ten (incorrect time conversion)	
		allow 1 mark for 2(.0) to any power of 10 (POT error)	

Question number	Answer	Additional guidance	Mark
8 (a) (iii)	an explanation linking (energy transfers when the car is decelerating)		(2) AO2
	(from) kinetic energy (store) (1)	idea of energy that would be otherwise wasted	
		uses an electrical pathway	
		{electric current / electricity / emf} produced	
		allow mechanical for kinetic in this context	
	(to) chemical energy (store)	recharges battery	
		increases available energy store of battery	
		more useful energy available	

Question number	Answer	Additional guidance	Mark
8 (b) (i)	either calculation of time:		(3) AO3
	substitution (1)		AU3
	$(t =) \frac{126 (x 10^{6})}{15 \times 400 (x 3600)}$		
	evaluation (1)		
	(t=) 5.8(3) (h)	accept correct time conversion e.g. 5h 50 min 350 min 21 000 s	
		award 2 marks for correct answer without working.	
		award 1 mark for answer of either 2.1 or 5.8(3) to any other power of ten	
	conclusion (1) claim is justified as the time is less (than 6 hours)	allow relevant comment based on incorrectly calculated time (independent mark)	
	or calculation of energy:	,	
	substitution (1)		
	$6 (x 3600) = \underline{E} 15 x 400$		
	rearrangement and evaluation (1)		
	E = 130 MJ	accept 129.6 MJ accept 129 600 000 J	
	conclusion (1) claim is justified as energy (in 6 hours) is more than (126 MJ) required.	allow relevant comment based on incorrectly calculated energy (independent mark)	

Question number	Answer	Additional guidance	Mark
8 (b) (ii)	substitution (1)	alternative method re-arrangement (1)	(2) AO2
	$126 (x 10^6) = Q x 400$	$(Q =) \underline{\underline{E}} V$	
		or	
		$(Q =) \frac{126 (x 10^6)}{400}$	
	re-arrangement and evaluation (1)	(substitution and) evaluation (1)	
	(Q =) 315 000 (coulombs)	(Q =) 315 000 (coulombs)	
		accept answers rounding to 320 000 (coulombs)	
		allow one mark for answers rounding to 3.2 to any other power of ten	
		award two marks for correct answer without working.	

Total 11 marks

Question number	Answer	Additional guidance	Mark
9 (a) (i)	substitution into work done = force x distance (1) 1800 = force x 1.2	alternative method rearrangement (1) $ (force =) \frac{work (done)}{d(istance moved)} $ or $ (force =) \frac{1800}{1.2} $	(2) AO2
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(force =) 1500 (N)	(force =) 1500 (N)	
		if no other marks scored allow one mark for answer of 500 (N) or 4500 (N) award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
9 (a) (ii)	substitution (1)	alternative method re-arrangement (1)	(2) AO2
	64 = <u>1800 x 100</u> total work done	(total work done =) work done on barrel x 100 efficiency	
	or	or	
	0.64 = 1800 total work done	(work done=) <u>1800 x 100</u> 64	
		or (work done=) <u>1800</u> 0.64	
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(work done =) 2800 (J)	(work done =) 2800 (J)	
		allow values that round to 2800; e.g. 2812.5	
		award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
9 (a) (iii)	any one of		(1) AO1
	additional mass in the system (1)	(bottom) pulley / rope has {mass / weight}	
		ignore references to the mass / weight of barrel	
	rope stretches (1)	tension in rope	
		ignore references to consequences of friction such as air resistance, heat or sound.	
		ignore pulling at an angle	
		ignore references to person	

Question	Indicative content	Mark
*9(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in	(6) AO3
	as relevant. Additional content included in the response must be scientific and relevant. Use of equipment Provide a measurable load; for example hang a cube on one end of the system / on spring (balance) Provide a measurable effort; for example hang spring balance on other end of system Method to measure distances moved; for example use metre rule Obtaining relevant data Measure weight of cube with spring balance Take reading of spring balance when being pulled Measure height by which the cube is raised Measure distance moved by (end of) spring balance. Processing results calculate work done on cube = obtained weight x obtained distance calculate work done by student = obtained force x obtained distance calculate efficiency as (calculable) work done on cube / (calculable) work done by student	
	inspect results to look for relationship between weight of cube and efficiencyplot graph of efficiency against weight	

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Analyses the scientific information but understanding and connections are flawed. (AO3)
		 An incomplete plan that provides limited synthesis of understanding. (AO3)
Level 2	3-4	 Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. (AO3)
		 A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3)
Level 3	5-6	 Analyses the scientific information and provide logical connections between scientific enquiry, techniques and procedures. (AO3)
		 A well-developed plan that synthesises relevant understanding coherently. (AO3)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance	Possible candidate responses
		At least two uses of equipment	Hang cubes on hook Spring balance on ring
Level 2	3-4	Additional guidance	Possible candidate responses
		At least two methods of obtaining relevant data from use of equipment.	Measure weight of cube with spring balance. Hang cube on hook. Pull on other end. Measure how far cube has gone up.
			OR
			Put cube on hook. Put spring balance on ring. Pull and read force. Measure how far spring balance moves.
Level 3zz	5-6	Additional guidance	Possible candidate responses
522		At least two methods of obtaining relevant data from correct use of equipment and at least two descriptions of processing that data.	Use spring balance to measure weight of cube and force needed by student. Measure height that cube was raised by. Calculate work done by multiplying force and distance moved in each case.

Total 11 marks

Question number	Answer	Additional guidance	Mark
10 (a) (i)	C (a) slower than (b) and (a) opposite to (b) B and D are incorrect because the direction of the readings are opposite and so the rotations must be opposite A is incorrect because the value in (a) is less than the value in (b) and so the rotation cannot be faster		(1) AO1

Question number	Answer	Additional guidance	Mark
10 (a) (ii)	either		(2) AO1
	an answer in terms of magnetic fields and forces:		
	current in the (dynamo) coil generates a magnetic field (1)		
	(interaction of) fields cause force (that opposes motion) (1)		
	OR		
	an answer in terms of output energy and input work:		
	energy is being transferred to the lamp (1)	accept lamp uses (thermal / heat / light) energy (to light up)	
	additional work is being done (by teacher) / additional energy is necessary (1)		
		ignore reference to greater (electrical) resistance	

Question number	Answer	Additional guidance	Mark
	substitution into $\frac{V_p}{V_s} = \frac{N_p}{N_s}$ (1) $\frac{230}{V_s} = \frac{800}{18}$ rearrangment (1) $(V_s =) \frac{18 \times 230}{800}$ evaluation (1) $(Vs =) 5.2 (V)$	alternative method re-arrangement (1) $(V_s =) \frac{V_p \times N_s}{N_p}$ substitution (1) $(V_s =) \frac{18 \times 230}{800}$ evaluation (1) $(Vs =) 5.2 (V)$ allow values that round to 5.2 (e.g. 5.175) $\text{award 1 mark for answers that round to } 10 000 \text{ (e.g. } 10 222)$ award full marks for correct answer without working.	(3) AO2

Question	Indicative content	Mark
*10(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6) AO2
	 Basic facts Sound is vibrations (of air) Loudspeaker emits / gives out sound Loudspeaker is an output device Microphone accepts / takes in sound Microphone is an input device 	
	 Principles of operation Alternating current or (electrical) signal sent into a loudspeaker Loudspeaker cone / coil vibrates (air) Motor effect in loudspeaker Microphone cone / coil is vibrated by air/sound Alternating current / (electrical) signal is produced by microphone Electromagnetic induction in microphone 	
	 Details of operation of loudspeaker Alternating current or (electrical) signal in coil produces changing magnetic field (changing) Force between magnetic field of coil and magnet. Frequency / amplitude of sound depends on frequency / amplitude of alternating current 	
	 Details of operation of microphone Coil oscillates in a magnetic field Generates an alternating p.d. (across the wires) / alternating current /signal Frequency / amplitude of alternating p.d. / current depends on amplitude / frequency of the sound 	

Level	Mark	Descriptor	
	0	No awardable content	
Level 1	1-2	 The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. 	
		Lines of reasoning are unsupported or unclear. (AO2)	
Level 2	3-4	 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. Lines of reasoning mostly supported through the application of 	
	ГС	relevant evidence. (AO2)	
Level 3	5-6	 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. 	
		 Lines of reasoning are supported by sustained application of relevant evidence. (AO2) 	

Level	Mark	Additional Guidance	General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance	Possible candidate responses
		Basic facts	A loudspeaker vibrates to make sound.
Level 2	3-4	Additional guidance	Possible candidate responses
		Principles of operation supported by basic facts. Facts may be implied by principles.	Sound vibrates the coil in the microphone. This makes a signal. OR
			A loudspeaker uses the motor effect to vibrate the cone and make a sound.
Level 3	5-6	Additional guidance	Possible candidate responses
		Principles and details of operation. Principles may be implied by details. One device may be more developed than the other but both devices must be referenced.	Alternating current in the loudspeaker coil makes the coil move inside the magnet. This forces the cone to vibrate and produce sound. The microphone makes an alternating current.

Total 12 marks